RF Breakdown Prevention, Part 2 Product Overview

May 7, 2015

Preston T. Partridge Antenna Systems Department Communication Systems Implementation Subdivision

Prepared for:

National Reconnaissance Office 14675 Lee Road Chantilly, VA 20151-1715

Contract No. FA8802-14-C-0001

Authorized by: Engineering and Technology Group

Developed in conjunction with Government and Industry contributions as part of the U.S. Space Program Mission Assurance Improvement Workshop.

Distribution Statement A: Approved for public release; distribution unlimited.

Acknowledgments

The creators of this document were part of the Mission Assurance Improvement Workshop (MAIW). The team was co-led by James Farrell, The Boeing Company; Preston Partridge, The Aerospace Corporation; and Dr. Jeffrey Tate, Raytheon Space and Airborne Systems.

The other members of the team came from the government and the aerospace industry. For their contributions, we thank the following contributing authors for making this collaborative effort possible:

Rick Bennett	Flight Microwave Corporation
Larry Capots	Lockheed Martin Corporation
Will Caven	Space Systems/Loral
Douglas Dawson	Jet Propulsion Laboratory
James Farrell	The Boeing Company
Bruce Flanick	Northrop Grumman
Aimee Hubble	The Aerospace Corporation
Thomas Musselman	The Boeing Company
Preston Partridge	The Aerospace Corporation
Rostislav Spektor	The Aerospace Corporation
Jeffrey Tate	Raytheon Space and Airborne Systems

Acknowledgments (cont.)

The Topic Team would also like to acknowledge the contributions and feedback from the subject matter experts who reviewed the document prior to publication:

Ryan Bentley **Ball Aerospace** Larry Epp Jet Propulsion Laboratory Paul Giuliano The Boeing Company Steven Gold Naval Research Lab Timothy Graves The Aerospace Corporation Eric Holzman Northrop Grumman **Raytheon Space and Airborne Systems** Kurt Ketola Rolf Kich Flight Microwave Corporation University of Maryland Rami Kishek Kevin Lim Flight Microwave Corporation NASA GSFC Jared Lucey Jerry Michaelson The Aerospace Corporation Raul Perez Jet Propulsion Laboratory Stu Quade Northrop Grumman Aeroflex, a Cobham Company Joseph Roubal Norman Strampach Lockheed Martin Corporation **Ghislain Turgeon** Space Systems/Loral Jian Xu Aeroflex, a Cobham Company

RF Breakdown Prevention, Part 2

Product Overview

James Farrell, Boeing Satellite Systems Dr. Jeffrey P. Tate, Raytheon Space and Airborne Systems Preston Partridge, The Aerospace Corporation

May 7, 2015

Agenda

- Issue definition
- Examples
- Motivation for product
- Team charter
- Product overview
- Workshop results
- Topic follow-on recommendations
- Team membership and recognition

RF Breakdown Remains an Issue

- Ionization breakdown (IB) and multipactor have caused multiple failures in RF components
 - Increasing satellite powers and bandwidth requirements will continue to increase risk
 - Consequence of failure ranges from degraded mission capability to complete loss of satellite
- Significant ground/on-orbit failures on current government and commercial programs
 - High power filters, isolators, circulators, antenna feeds, switches, etc.
- Issues currently handled by a few industry experts (many of whom are on the team) and each organization's general guidelines

IB damage in cavity filter from test

U.S. Space Program Mission Assurance Improvement Workshop

U.S. SPACE PROGRAM MISSION ASSURANCE IMPROVEMENT WORKSHOP LOCKHEED-MARTIN | SUNNYVALE, CA | MAY 5 - 7, 2015 courtesy of J. Farrell and Boeing

Timeline of RF Breakdown Issues

- Recall timeline from Year 1 presentation
- Problems continue to arise, requiring deployment of experts

Major program delays and loss of functionality caused by RF breakdown

U.S. Space Program Mission Assurance Improvement Workshop

Motivation for RF Breakdown Prevention Standard

• Ionization breakdown failures on programs affecting mission success

- Lack of ionization breakdown prevention standard in industry
 - Best practices for ionization breakdown issues vary widely across the industry
 - Standardization of testing, analysis, and requirements development methods needed
 - No standard currently exists at the domestic or international levels
- Existing multicarrier multipactor best practices held by each prime contractor
 - No scientific consensus on best practices
 - However, several widely used methods require clear explanation and documentation in multipactor standard
- Need to establish forum for ongoing updates and reviews of document after MAIW
 - Creation of AIAA committee for RF spacecraft components and adoption of TORs into AIAA standards

RF Breakdown Part 2 Team Charter

- Create draft standard for ionization breakdown prevention
 - Follow format of Year 1 multipactor document
 - Provide analysis and test minimum requirements and guidelines
- Address multicarrier multipactor by documenting current industry best practices
 - Provide summary of survey in a TOR
- Work with AIAA to create RF breakdown committee
 - Stand up RF spacecraft components committee for enduring maintenance of documents
 - Committee to be made up of MAIW team members with additional members form government and academia

Ionizing Breakdown (IB) Document Overview

U.S. Space Program

Mission Assurance Improvement Workshop

IB Device Verification Flow Chart

- Flow charts used for demonstration of processes to qualify/accept a device for ionization breakdown
- References to sections in document in each box

Figure 2.2: Flow chart for margin determination and verification process

IB Device Categories and Margins

- Different methods presented for analyzing different device categories
- Margins to qualification by analysis, qualification by test, and acceptance provided

Category	Definition	Device Features or Examples	Analytical RF Breakdown Level Determination (Section 5)
1	Simple geometries. Bounding diffusion length can be determined	Resonator Cavity, Transmission Lines	Require Analytical Curve (Section 5)
2	Diffusion length cannot be directly determined	Impedance transitions, filters, multiplexers, isolators	Require appropriate numerical multidimensional plasma breakdown simulator
3	Uncontrolled geometries or workmanship variability	Potted device, tuning screws in critical areas	N/A

Test (dB)		Analysis (dB)
Qualification	Acceptance	Qualification
6	3	10*

*Category 3 cannot be qualified by analysis

IB Recommended Methods

• Provide industry best practices in guidance sections (7 and 8) of document for analysis and test

U.S. Space Program Mission Assurance Improvement U.S Workshop

Multicarrier Multipactor Outline

- Detailed explanation of industry best practices used by different organizations
 - How to calculate
 - Applicability and limitations of each
- Methods discussed
 - $n^2 P$ (square of number of carriers times power of each carrier)
 - Gap crossing rules (i.e., P20)
 - Total average power
 - Statistical methods

Multicarrier Multipactor Example Charts

12

Intended Product Use

- Ionization breakdown document
 - Use by prime contractors, suppliers, commercial satellite operators, government agencies
 - Standard set of requirements for IB test and analysis verification
 - Provide guidance for test and analysis methods
 - Deliver to new AIAA committee for conversion to formal standard
 - Share with ESA to attempt for unified international standard
- Multicarrier TOR
 - Use by prime contractors, suppliers, commercial satellite operators, government agencies as a reference document for existing methods

Leveraging Expertise to Meet Future Challenges

- Supporting funded efforts by researchers with relevant high-power expertise
 - MAIW Year 1 released TOR in use
 - Year 2 AFOSR MURI: Transformational Electromagnetics
 - Lead PI: University of New Mexico
 - Serving on the Industrial Advisory Board (Tate)
 - Graduate student teleseminars
 - 2014+ year-end reviews
 - MURI Year 3 and 4 recommendations
- Supporting future AFOSR MURI BAA development
- Upcoming discussions with other customer and government communities

RF Breakdown Prevention, Part 2 Team Membership

Core Team

First Name	Last Name	Organization
Preston	Partridge	The Aerospace Corporation
James	Farrell	Boeing
Jeff	Tate	Raytheon
Aimee	Hubble	The Aerospace Corporation
Rostislav	Spektor	The Aerospace Corporation
Larry	Capots	Lockheed Martin
Will	Caven	SSL
Thomas	Musselman	Boeing
Rick	Bennett	Flight Microwave
Douglas	Dawson	NASA (JPL)
Bruce	Flanick	Northrop Grumman

Bold – co-leads

SME Team

First Name	Last Name	Organization
Ryan	Bentley	Ball Aerospace
Larry	Ерр	JPL
Paul	Giuliano	Boeing
Steven	Gold	Naval Research Lab
Tim	Graves	The Aerospace Corporation
Eric	Holzman	Northrop Grumman
Kurt	Ketola	Raytheon
Rolf	Kich	FMC
Rami	Kishek	University of Maryland
Kevin	Lim	FMC
Jared	Lucey	GSFC
Jerry	Michaelson	The Aerospace Corporation
Raul	Perez	JPL
Stu	Quade	Northrop Grumman
Joseph	Roubal	Aeroflex
Norman	Strampach	Lockheed Martin
Alex	Thompson	Intelsat
Ghislain	Turgeon	SSL
Jian	Xu	Aeroflex

Bold – attended workshop

AEROSPACE REPORT NO. TOR-2015-02540

RF Breakdown Prevention Part 2 Product Overview

Approved Electronically by:

Todd M. Nygren, GENERAL MANAGER SYSTEMS ENGINEERING DIVISION ENGINEERING & TECHNOLOGY GROUP	Jacqueline M. Wyrwitzke, PRINC DIRECTOR MISSION ASSURANCE SUBDIVISION SYSTEMS ENGINEERING DIVISION ENGINEERING & TECHNOLOGY GROUP	Diana M. Johnson, PRINC DIRECTOR COMMUNICATION SYS IMPLEMENTATION SUBDIV COMMUNICATIONS & CYBER DIVISION ENGINEERING & TECHNOLOGY GROUP
Catherine J. Steele, SR VP NATL SYS NATIONAL SYSTEMS GROUP	Jackie M. Webb-Larkin, SECURITY SPECIALIST III GOVERNMENT SECURITY SECURITY OPERATIONS OPERATIONS & SUPPORT GROUP	

© The Aerospace Corporation, 2015.

All trademarks, service marks, and trade names are the property of their respective owners.

SY0026

AEROSPACE REPORT NO. TOR-2015-02540

RF Breakdown Prevention Part 2 Product Overview

Technical Peer Review Performed by:

Jacqueline M. Wyrwitzke, PRINC DIRECTOR MISSION ASSURANCE SUBDIVISION SYSTEMS ENGINEERING DIVISION ENGINEERING & TECHNOLOGY GROUP Catherine A. Allen, DIRECTOR DEPT ANTENNA SYSTEMS DEPT COMMUNICATION SYS IMPLEMENTATION SUBDIV ENGINEERING & TECHNOLOGY GROUP Preston Partridge, ENGRG SPECIALIST ANTENNA & PHASED ARRAY EVALUATION ANTENNA SYSTEMS DEPT ENGINEERING & TECHNOLOGY GROUP

Cheryl L. Sakaizawa, ADMINISTRATIVE SPEC III MISSION ASSURANCE SUBDIVISION SYSTEMS ENGINEERING DIVISION ENGINEERING & TECHNOLOGY GROUP

© The Aerospace Corporation, 2015.

All trademarks, service marks, and trade names are the property of their respective owners.

SY0026