
  

 

 AEROSPACE REPORT NO. 
 TOR-2011(8591)-20 

Space Segment Software Readiness Assessment 

June 3, 2011 

Suellen Eslinger1, Leslie J. Holloway2, and Robyn Wilkes2 
1Software Engineering Subdivision, Computers and Software Division 
2Software Acquisition and Process Department, Software Engineering Subdivision 

Prepared for: 

Space and Missile Systems Center 
Air Force Space Command 
483 N. Aviation Blvd. 
El Segundo, CA  90245-2808 

Contract No. FA8802-09-C-0001 

Authorized by: Engineering and Technology Group 

Developed in conjunction with Government and Industry contributions as part of the U.S. Space 
Programs Mission Assurance Improvement workshop. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

 

 AEROSPACE REPORT NO. 
 TOR-2011(8591)-20 

Space Segment Software Readiness Assessment 

June 3, 2011 

Suellen Eslinger1, Leslie J. Holloway2, and Robyn Wilkes2 
1Software Engineering Subdivision, Computers and Software Division 
2Software Acquisition and Process Department, Software Engineering Subdivision 

Prepared for: 

Space and Missile Systems Center 
Air Force Space Command 
483 N. Aviation Blvd. 
El Segundo, CA  90245-2808 

Contract No. FA8802-09-C-0001 

Authorized by: Engineering and Technology Group 

Developed in conjunction with Government and Industry contributions as part of the U.S. Space 
Programs Mission Assurance Improvement workshop. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

 

 AEROSPACE REPORT NO. 
 TOR-2011(8591)-20 

Space Segment Software Readiness Assessment 

June 3, 2011 

Suellen Eslinger1, Leslie J. Holloway2, and Robyn Wilkes2 
1Software Engineering Subdivision, Computers and Software Division 
2Software Acquisition and Process Department, Software Engineering Subdivision 

Prepared for: 

Space and Missile Systems Center 
Air Force Space Command 
483 N. Aviation Blvd. 
El Segundo, CA  90245-2808 

Contract No. FA8802-09-C-0001 

Authorized by: Engineering and Technology Group 

Developed in conjunction with Government and Industry contributions as part of the U.S. Space 
Programs Mission Assurance Improvement workshop. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

SK0294(2, 5840, 126, GDB) 
ii 

 AEROSPACE REPORT NO. 
 TOR-2011(8591)-20 

Space Segment Software Readiness Assessment 

 
 
 
 
Approved by: 
 
 
 
 
 
 
Asya Campbell, Principal Director 
Software Engineering Subdivision 
Computers and Software Division 
Engineering and Technology Group 

 Malina Hills, General Manager 
MILSATCOM Division 
Space Programs Operations 
Space Systems Group 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

iii 

Acknowledgments 

This document has been produced as a collaborative effort of the Mission Assurance Improvement 
Workshop. The forum was organized to enhance mission assurance processes and supporting 
disciplines through collaboration between industry and government across the U.S. Space Program 
community utilizing an issues-based approach. The approach is to engage the appropriate subject 
matter experts to share best practices across the community in order to produce valuable mission 
assurance guidance documentation. 

The document was created by multiple authors throughout the government and the aerospace 
industry. We thank the following contributing authors for making this collaborative effort possible: 

Claudia Baker (Boeing)  
Bonnie Triezenberg (Boeing) 
Robin Fulford (General Dynamics) 
Steven Pereira (Johns Hopkins University Applied Physics Laboratory) 
Dwight Wrench (Lockheed Martin Corporation) 
Greg Whittaker (The Mitre Corporation) 
Cassie Weissert (Orbital Sciences Corporation) 
Michael Ostroff (Orbital Sciences Corporation) 
Kilian Chan (Northrop Grumman Aerospace Systems) 
Cathy Karnes (Raytheon Space and Airborne Systems) 

A special thank-you for co-leading this team and efforts to ensure completeness and quality of this 
document goes to: 

Michael Ostroff and Cassie Weissert (Orbital Sciences Corporation) 
Suellen Eslinger (The Aerospace Corporation) 

The Software Readiness Assessment Topic Team would like to acknowledge the support, 
contributions, and feedback from the following organizations: 

The Aerospace Corporation 
Ball Aerospace & Technologies Corp 
The Boeing Company 
General Dynamics 
Johns Hopkins University Applied Physics Laboratory 
Lockheed Martin Corporation 
Northrop Grumman Aerospace Systems 
Orbital Sciences Corporation 
Raytheon Space and Airborne Systems 
The Mitre Corporation 
Space and Missile Systems Center (SMC) 



 

iv 

The authors deeply appreciate the contributions of the software subject matter experts who reviewed 
the document: 

Melanie Christensen (Ball Aerospace and Technologies Corporation) 
Dorothy McKinney (Lockheed Martin Corporation) 
Tony D’Agostino and Ed Wild (Northrop Grumman Aerospace Systems) 
Christina Tudor (Orbital Sciences Corporation) 
Raul Ponce (Pratt and Whitney Rocketdyne [PWR]) 
Bruce Wetts (Raytheon Space and Airborne Systems) 
Jay Fisher (United Launch Alliance, LLC [ULA]) 

  



 

v 

Executive Overview 

The Mission Assurance Improvement Workshop steering committee selected space segment software 
readiness assessment as a topic for 2011 because of the increasing importance of software in space 
systems. The acquisition of space systems has recently been fraught with problems due to software, 
up to and including mission failure. The steering committee decided that more emphasis on software 
mission assurance is needed in the development of space system mission-critical software, especially 
in the early life cycle phases.  

The mechanism selected for increasing space segment software mission assurance for this year’s 
study is the software readiness assessment. A software readiness assessment is an evaluation of 
software technical and management maturity at predefined points in the software product life cycle. 
The purpose of a software readiness assessment is to determine the readiness of the software for the 
next phase of development or for an upcoming designated event and the associated risk of 
proceeding. When software products move to the next phase of the development life cycle without 
achieving sufficient maturity, the result is that defects are passed into downstream activities where 
they are less likely to be found, cost more, and take more time to fix. The goal of a software readiness 
assessment is to provide objective, independent feedback to the program’s software stakeholders who 
can determine if the mission assurance requirements of the system have been met.  

The space segment software readiness assessment team was made up of representatives from The 
Aerospace Corporation, The Boeing Company, General Dynamics Corporation, Johns Hopkins 
University Applied Physics Laboratory, Lockheed Martin Company, The MITRE Corporation, 
Northrop Grumman Aerospace Systems, Orbital Sciences Corporation, and Raytheon Space and 
Airborne Systems. The team met early in the fiscal year and defined a task plan for the development 
of a document. The team met weekly by telecom and monthly face-to-face. The team unanimously 
determined the scope and content of the document and all team members contributed to the document 
development. 

This document is the output of the team’s effort. It defines a process for conducting software 
readiness assessments and a set of criteria for evaluating software readiness. The use of this document 
is intended to ensure the completeness and uniformity of assessments across different assessment 
teams, on different programs, and at different points in the life cycle. The team members intend for 
this document to be a useful tool to organizations developing space segment software. 

  



 

vi 

  



 

vii 

Contents 

Acknowledgments ................................................................................................................................. iii 

Executive Overview ............................................................................................................................... v 

1.  Introduction .................................................................................................................................. 1 
1.1  Objective ........................................................................................................................... 1 
1.2  Scope................................................................................................................................. 1 
1.3  Independence in a Software Readiness Assessment ......................................................... 2 
1.4  SRA Process Overview ..................................................................................................... 2 
1.5  Assessment Points in the Development Life Cycle .......................................................... 3 
1.6  Effective Use of This Document ...................................................................................... 3 
1.7  Document Contents .......................................................................................................... 4 

2.  Application of Software Readiness Assessments ......................................................................... 5 
2.1  Positioning of Assessments in the Software Development Life Cycle ............................. 5 

2.1.1  Software Readiness Assessment Points ............................................................. 5 
2.1.2  Software Development Life Cycle Models ........................................................ 5 
2.1.3  Potential Software Readiness Assessment Points ............................................ 10 

2.2  Planning and Performing the Assessment....................................................................... 11 
2.2.1  Plan the Assessment ......................................................................................... 12 
2.2.2  Prepare for the Assessment .............................................................................. 13 
2.2.3  Conduct the Assessment .................................................................................. 13 
2.2.4  Complete the Assessment ................................................................................ 14 

2.3  Tailoring ......................................................................................................................... 14 

3.  Process, Product, and Resource Perspectives ............................................................................. 17 
3.1  Assessment Criteria for the Product Perspective ............................................................ 17 
3.2  Assessment Criteria for the Process Perspective ............................................................ 17 
3.3  Assessment Criteria for the Resource Perspective .......................................................... 17 

4.  Acronyms.................................................................................................................................... 73 

Appendix A.  Glossary ...................................................................................................................... 75 

 
  



 

viii 

Figures 

Figure 1.  Scope of space system software readiness assessment. ................................................ 2 
Figure 2.  Waterfall life cycle model. ............................................................................................ 6 
Figure 3.  Incremental software development life cycle model. ................................................... 8 
Figure 4.  Iterative unified process software development life cycle model. ................................ 9 
Figure 5.  Agile software development life cycle model. ............................................................ 10 
Figure 6.  Steps in planning and performing a software readiness assessment. .......................... 11 
 

Tables 

Table 1.  Potential Software Readiness Assessment Points ....................................................... 11 
Table 2.  Assessment Criteria for the Product Perspective ........................................................ 18 
Table 3.  Assessment Criteria for the Process Perspective ........................................................ 37 
Table 4.  Assessment Criteria for the Resource Perspective ...................................................... 67 
Table 5.  Glossary ...................................................................................................................... 76 

 



 

1 

1. Introduction 

1.1 Objective 

The acquisition of space systems is often fraught with problems due to software-related issues, 
including performance deficiencies, software defects, on-orbit anomalies, cost or schedule overruns, 
and launch delays. When software products move to the next phase of the development life cycle 
without achieving sufficient maturity, the result is that defects are passed into downstream activities 
where they cost more and take more time to fix. Clearly, more emphasis on software mission 
assurance is needed in the development of space system mission-critical software, especially in the 
early life cycle phases. 

A specific software mission assurance activity that has been found to be very effective on space 
programs is a software readiness assessment (SRA). An SRA is an evaluation of software technical 
and management maturity at predefined points in the software product life cycle. The purpose of an 
SRA is to determine the readiness of the software for the next phase of development or for an 
upcoming designated event and the associated risk of proceeding. The ultimate goal is to provide 
objective, independent feedback to the program’s software stakeholders.  

This document defines a process for conducting SRAs and a set of assessment criteria for evaluating 
software readiness. The use of this document is intended to ensure the completeness and uniformity 
of assessments across different assessment teams, on different programs, and at different points in the 
life cycle. 

In performing an SRA, the SRA team evaluates risk by assessing software planning, technical 
performance, execution progress, and software quality, and their effect on software cost and schedule. 
To accomplish this, the SRA team applies the assessment criteria provided in this document to three 
perspectives of the software development program as it evolves through the life cycle: products, 
processes, and resources.  

1.2 Scope 

The scope of the SRAs defined in this document is limited to the space segment software. A generic 
structure of a space system program is shown in Figure 1. This figure uses dark blue to show the 
space segment software areas that are in the scope of the SRAs described in this document. This 
includes all onboard software, including spacecraft bus software and payload software. In addition, 
the space segment software includes the software in a satellite operations center that is used for 
satellite command and control (e.g., telemetry processing, tracking, commanding, satellite health and 
status, and satellite operations planning and execution). The space segment software does not include 
other ground operations and ground support software (e.g., collection management, asset allocation, 
mission data processing, data dissemination, ground control, and network control) or user equipment 
software.  

Although this document is limited to addressing these areas of space system software, most of the 
assessment criteria apply to any mission-critical software with high assurance requirements. 



 

2 

 
Figure 1. Scope of space system software readiness assessment. 

 
The scope of the SRA as defined in this document includes the software portion of firmware but not 
the hardware portion. It does not include the software prepared as part of Application-Specific 
Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) development that is used to 
drive the foundry equipment to produce the device.  

1.3 Independence in a Software Readiness Assessment 

The SRA should be chartered by a government or contractor person who has authority to act on the 
assessment team’s recommendations. The assessment team may consist of personnel outside of or 
within the program, as long as they are independent of the personnel responsible for the products 
under development. The software readiness assessment may be conducted as a software-only risk 
assessment, as part of a program independent review, or in preparation for a program milestone or 
gated event. 

1.4 SRA Process Overview 

The SRA team evaluates the software products, processes, and resources, and determines the degree 
to which the assessment criteria are met, with rationale as to why the SRA team has made these 
judgments. The SRA team synthesizes these results into a risk assessment for proceeding to the next 
phase of software development or the identified upcoming event. The SRA results in a summary risk 
assessment for continued development. There are three choices for this summary risk assessment: 

1. Low risk. The assessment team has identified no or minor deficiencies. Corrections can be 
made while software development continues as planned. 



 

3 

2. Moderate risk. The assessment team has identified at least one deficiency within the scope 
of the software development team for which corrective action is recommended before 
continuation to the next phase or milestone. There may also be deficiencies in the low risk 
category.  

3. High risk. The assessment team has identified at least one deficiency that could lead to 
program failure. There may also be deficiencies in the low and moderate risk categories. 
Scope, schedule, resources, or technology maturity are misaligned. Program corrective action 
for the high risks is required before continuation to the next phase or milestone.  

The results of the SRA are documented in a briefing that identifies the key risk areas and provides the 
summary risk assessment. The SRA process is described in detail in Section 2.2 below. 

1.5 Assessment Points in the Development Life Cycle 

SRAs are positioned at predefined points in the development life cycle where the readiness of the 
software for the next phase of development, or for an upcoming designated event, needs to be 
understood, along with the associated risk of proceeding. While there are numerous points in the 
development life cycle where such an assessment may be performed, this document addresses only 
two. The first assessment point is the Software Architecture Readiness (SAR). The SAR is conducted 
at the completion of software development planning and software architecture definition. The second 
assessment point is the Build Turnover Readiness (BTR). The BTR is conducted when a software 
build is turned over to an external organization for integration and test into the larger system.  

While this version of the document contains criteria for only two assessment points, the authors 
strongly recommend that SRAs be performed as a routine way of doing business throughout the 
development life cycle. In particular, it is recommended that SRAs be performed early and often in 
order to identify the risks and issues in the software development as they occur, so that early 
corrective action is possible. Section 2.1 discusses in more detail how these assessments are 
positioned in different software life cycle models. 

1.6 Effective Use of This Document 

This document provides guidance for the planning, preparation, conduct, and completion of SRAs. It 
is intended to be used by development contractor teams, government teams, or combined 
development contractor-government teams. Government teams may include Federally Funded 
Research and Development Center (FFRDC), Systems Engineering and Integration (SE&I), or 
Systems Engineering and Technical Assistance (SETA) personnel in addition to, or instead of, 
government personnel. 

Software expertise is required to properly apply the assessment criteria contained in this document. 
The criteria assume a depth of understanding in all software engineering activities, products, and 
processes as well as a depth of understanding of the space segment software domain and its 
associated issues and risks. The SRA team members must also have sufficient experience in software 
development and management, so that they are capable of identifying risks and properly assessing 
their impact and likelihood. The criteria should not be used as a checklist by personnel who do not 
have this level of software expertise. 

When multiple SRAs are performed on a program, as recommended in Section 1.5 above, the ideal 
situation would be to have continuity of personnel across the assessment teams. While this is not 
always possible, a criterion for selecting SRA team members should be their participation on prior 
SRAs for the program. 



 

4 

This document is not written as a standard, and thus should not be used on contracts as a compliance 
document. If the government intends to perform SRAs or expects the development contractor to 
perform SRAs, tasking for this should be included in the statement of work, as well as requirements 
for government program office access to software products and processes. In addition, this TOR 
should be cited as a reference document for that tasking. Care should be taken to ensure that the 
number and scope of the contractually required SRAs are consistent with the scope, criticality, and 
integrity level of the software under development. Tailoring of the SRA is discussed in Section 2.3 
below. 

While this document specifically describes criteria for a software readiness assessment of a program 
by an independent team, the criteria may be used in other ways. A gap analysis can be performed 
between the organizational or program software processes, standards and procedures and the criteria 
in this document. The organizational or program software processes, standards, and procedures can 
then be updated where they are deficient against the criteria. Another possible use of the criteria is a 
self-assessment by the software development team so that the team can fix identified deficiencies 
before the next phase of development or program event or in preparation for an upcoming SRA.  

1.7 Document Contents 

Section 1 of this document provides introductory material, and Section 2 describes how to apply 
SRAs. Section 3 contains the assessment criteria for the products, processes, and resources. 
Appendices provide supporting information, such as acronyms and abbreviations, a glossary, and a 
reference list. 

The term “should” is used throughout this document to describe activities that the authors recommend 
to be performed for an SRA. Since this is a guidance document, the word “shall” is not used. 



 

5 

2. Application of Software Readiness Assessments 

2.1 Positioning of Assessments in the Software Development Life Cycle  

This section describes the positioning of software readiness assessments in the software development 
life cycle and the associated position of these assessments in the system development life cycle. This 
includes a description of the objectives of the software readiness assessment at each point.  

2.1.1 Software Readiness Assessment Points 

The two software readiness assessment points covered in this document are: 

1. Software Architecture Readiness (SAR), an early software life cycle point, occurs at the 
completion of software development planning and software architecture definition. The 
objective of the SAR assessment is to identify risks due to incomplete or immature software 
planning, software architecture and software requirements. It is essential to identify these 
risks early in development before significant resources are expended.  

2. Build Turnover Readiness (BTR), a late software life cycle point, occurs: 

a. For onboard software, prior to loading the software into the flight hardware;  

b. For ground software, prior to installing the software into the operational ground facility 
or starting rehearsals, whichever comes first.  

The objective of the BTR is to identify risks due to incorrect or immature software executables, user 
documentation and transition planning. Open discrepancy reports, problem reports or change requests 
should be used to assess the correctness and maturity of the software.  

These readiness assessment points are the minimum recommended for a program. Performing 
assessments early and often is preferred. These assessments may be part of an overall independent 
and milestone review plan, or can be conducted separately. Each assessment should consider the 
results, actions and identified risks of prior assessments and reviews as an input. The results of the 
most recent software assessment should be addressed in subsequent milestone reviews. 

2.1.2 Software Development Life Cycle Models 

The software industry uses a variety of development life cycle models, each of which can be effective 
under specific circumstances. This document does not advocate a specific software development life 
cycle model, and there is no assumption as to the order in which software development activities are 
conducted. To provide perspective in applying software readiness assessments, this section addresses 
four commonly used software life cycle models: waterfall, incremental, iterative Unified Process, and 
agile. Note that each life cycle model has its own nomenclature for development activities and 
deliverables, and the assessors should be skilled in applying the assessment criteria to the chosen life 
cycle model. With the exception of this section, this document is written in a life cycle model-neutral 
fashion focused on processes, products, and resources and uses nomenclature aligned with the 
Software Development Standard For Space Systems (TOR-2004-(3909)-3537B). 

Software development life cycle models are not the same as system development life cycle models. 
Synchronizing software development milestones with system milestones can be difficult. As an 
example, the traditional system development life cycle model is a “waterfall” life cycle model, where 
each activity is performed once. In contrast, there are a number of software lifecycle models where 
the activities repeat. 



 

6 

The following sections describe how software readiness assessments and system events may be 
related for the four selected software development life cycle models. 

2.1.2.1 Waterfall Software Development Life Cycle Model 

Figure 2 shows the waterfall software development life cycle model and its relationship to the system 
development life cycle model. In the waterfall life cycle, software development starts after system 
requirements have been defined and allocated to software. All software development is complete and 
software is qualification tested before a single turnover to system integration and test.  

In the waterfall life cycle model, SAR should be performed early in the system and software design 
phase. Ideally, it is performed at the point when the software architectural (or high level) design is 
complete and prior to completing detailed software design. Architectural completeness with respect to 
the program’s required quality attributes (reliability, dependability, maintainability, etc.) is the critical 
readiness criteria. For this reason, architectural design should complete well before program PDR and 
should guide the allocation of detailed software requirements.  

Although Figure 2 shows BTR occurring at the end of software qualification testing, this is the ideal. 
In many cases, an early release of the software is made to system test or to the next level of 
integration prior to completion of software qualification testing. In this case, BTR should be 
performed in conjunction with the software release to system test or the next level of integration. A 
BTR should also be performed for in-process releases of software to external integration or test 
facilities.  

 
Figure 2. Waterfall life cycle model. 



 

7 

2.1.2.2 Incremental Software Development Life Cycle Model 

Figure 3 shows the incremental software development life cycle model and its relationship to the 
system development life cycle model. In the incremental life cycle model, software development 
begins after the system requirements have been defined and allocated to software. The software 
requirements and architecture are defined up front, to the extent possible, based on the allocated 
system requirements. The software requirements are then partitioned into increments for 
implementation. Each increment implements the software satisfying its collection of software 
requirements through a sequence of the following software development activities: design, code and 
unit testing, and integration and testing.  

The first increment focuses on software architecture decisions. The software architecture is validated 
to ensure the software requirements will be met, including the quality attributes (reliability, 
dependability, maintainability, etc.), and will accommodate all of the remaining increments without 
substantial rework. 

The last increment ends with software qualification testing of the entire software product. Earlier 
increments may also include software qualification testing, especially if that increment is provided to 
an external organization for integration into the next level or for test bed or test facility checkout. 
Each increment after the first is integrated with the preceding increment, and the increments usually 
overlap in time.  

In the incremental life cycle model, SAR should be performed early in the system design phase after 
the principal software architecture decisions are complete. Software architectural completeness with 
respect to the program’s required quality attributes is the critical readiness criteria. The software 
architecture must also be able to serve as the framework for implementing the remaining increments 
and satisfying all of the software requirements. For these reasons, the SAR is generally held before 
the program PDR.  

In the incremental life cycle model, software qualification testing is performed on the final increment, 
and BTR should be performed after the completion of the software qualification testing and before the 
software is released to the next higher level of integration. Build Turnover Readiness (BTR) 
assessments should also be held for any early increments that are released to an external organization. 



 

8 

 
Figure 3. Incremental software development life cycle model. 

2.1.2.3 Iterative Unified Process Software Development Life Cycle Model 

Figure 4 shows an iterative life cycle model used in the Unified Process and its relationship to the 
system development life cycle model. The Unified Process includes four phases: inception, 
elaboration, construction, and transition. Within the phases, the software is partitioned into iterations, 
shown by the small rectangles in the figure. Each iteration goes through the entire software 
development life cycle of requirements definition, architecture definition, design, code and unit 
testing, and integration and testing. 

The objective of the software iterations performed in the inception phase is to provide data for system 
trades and to perform sufficient risk reduction to ensure the viability of proceeding with development. 
In the traditional system development waterfall life cycle, the inception phase is completed prior to 
authorization to proceed (e.g., prior to the beginning of the contract to develop the system).  

The objective of the software iterations in the elaboration phase is to develop an executable version of 
the software architecture, derive and analyze all architecturally significant requirements, and mitigate 
development risks. Typically, the elaboration phase ends prior to program PDR. In this life cycle 
model, SAR should be performed during the elaboration phase, prior to program PDR.  

The objective of the software iterations in the construction phase is to develop the software to satisfy 
the allocated system requirements. Some iterations during the construction phase may be released to 
an external organization for integration into the next level. Software qualification test is often not 
performed until the final construction iteration is complete. In the Unified Process, ideally BTR 
should be conducted iteratively. While it is not necessary to perform a BTR for each development  
iteration, it is essential that a BTR be performed at each incremental release to system test or the next 



 

9 

level of integration. At a minimum, BTR should be performed at the end of the last construction 
iteration, prior to transitioning to operations, at the start of the transition phase.  

 
 

Figure 4. Iterative unified process software development life cycle model. 

2.1.2.4 Agile Software Development Life Cycle Model 

In the agile life cycle model, shown in Figure 5, software development is performed in a series of 
cycles (shown in the figure as small rectangles) for initiation, development, and production. Initiation 
(cycle 0) focuses on team and development environment readiness. The software development is 
partitioned into cycles that result in releases. There are both development and production releases, 
where production releases occur during operations and maintenance. Each cycle includes the software 
development activities of requirements definition, architecture, design, code and unit test, and 
integration and test. The cycles are generally very short (weeks) in duration. Some development 
releases may be turned over to an external organization for integration into the next level. Software 
qualification test is often not performed until the final development release is complete. Examples of 
agile software development methods used in the agile life cycle model include eXtreme Programming 
and Scrum. 

In the agile software development life cycle model, SAR should be performed within the first few 
development cycles as the primary architectural features of the software are completed. Agile life 
cycles often emphasize iterative delivery of business value rather than iterative reduction of program 
risk. For this reason, architectural agility and adaptability may be more critical than architectural 
completeness, and the SAR product criteria should be tailored to reflect this. If significant 

Note: Elaboration iterations focus 
on software architecture and 
requirements. Construction 

iterations implement the system.

Each iteration
Software 
Integration 

Test

Detailed 
Design

Requirements & 
Architectures

Code & 
Unit Test

Software Life Cycle and 
Software Readiness 
Assessment

System Life Cycle and System Reviews

Software Life 
Cycle to System 
Life Cycle 
Mapping

TransitionElaborationInception Construction

System 
Implementation

System  
Architecture

System 
Requirements 
Definition

System Design
System 

Integration Test
System 

Qualification Test

SRR PDR CDR TRRSDR

BTRSAR

Iteration prior to release N
Software 

Qualification 
Test

Software 
Integration 

Test

Detailed 
Design

Requirements & 
Architectures

Code & 
Unit Test



 

10 

architectural refactoring is performed at any point in the program, readiness against the SAR criteria 
should be re-assessed. 

In the agile software development life cycle model, it is not necessary to perform a BTR for each 
development release. It is, however, essential that a BTR be performed for each release going to 
production. 

 

Figure 5. Agile software development life cycle model. 

 

2.1.3 Potential Software Readiness Assessment Points 

Table 1 provides an example list of potential software readiness assessment points for a program. The 
two software readiness assessment points covered in this document are highlighted in bold. This list 
should be tailored for the program’s selected system and software life cycle models (see Section 
142.3).   

Software Life Cycle and 
Software Readiness 
Assessments

Cycle 0

Initiate the project

Release

Deploy release N 
into production

Production

Operate and 
support release N

Development 
Cycles

1 . . . . N

Note: Effort in development 
cycles focuses on delivering 
a working system that meets 
the changing needs of the 

stakeholders. 

Release 1

Development Cycles Production Cycles

System 
Implementation

System  
Architecture

System 
Requirements 
Definition

System Design
System 

Integration Test
System 

Qualification Test

SRR PDR CDR TRRSDR

System Life Cycle and System Reviews

BTR

SAR BTR

Software Life 
Cycle to System 
Life Cycle 
Mapping

Release N

Development Cycles Production Cycles



 

11 

Table 1. Potential Software Readiness Assessment Points 

SW Readiness Assessment Points 
1. Software Initiation Readiness (IBR Timeframe) 

2. Software Planning and Process Readiness 
(Readiness for use of plans and processes for software development) 

3. Software Readiness for  SRR 

4. Software Readiness for SFR (or SDR) 

5. Software Architecture Readiness (SAR) 

6. Software Readiness for PDR 

7. Software Readiness for CDR 

8. Software Build Readiness (for each build) for: 
a. Software Build Baseline Configuration Readiness  

(detailed build planning review) 
b. Software Build Design Readiness 
c. Software Build Test Readiness  
d. Software Build Exit Readiness  

9. Software Readiness for TRR 
10. Build Turnover Readiness (BTR) 

11. Software Readiness for Pre-Ship Review (PSR) 

12. Software Readiness for Mission Readiness Review (MRR) 

13. Software Readiness for Flight Readiness Review (FRR) 

14. Software Readiness for Transition to Operations  
(may include Initial Checkout Review [ICR]) 

15. Software Readiness for Transition to Maintenance 

BTR Build Turnover Readiness PSR Pre-Ship Review 
CDR Critical Design Review SAR Software Architecture Readiness 
FRR Flight Readiness Review SDR System Design Review 
I&T Integration and Test SFR System Functional Review 
IBR Integrated Baseline Review SRR System Requirements Review 
ICR Initial Checkout Review SW Software 
MRR Mission Readiness Review TRR Test Readiness Review 
PDR Preliminary Design Review   

 
2.2 Planning and Performing the Assessment 

A software readiness assessment for a major space system involves many stakeholders: the readiness 
assessment team, the contractor’s software and systems engineers, government software and systems 
engineers, and management. In order to produce an effective and efficient assessment, good planning 
is necessary. The sequence of activities involved in planning and performing a software readiness 
assessment is shown in Figure 6, and described in the subsequent paragraphs of this section. 
Depending on the requirements, scope, and constraints of the software development, the steps of this 
process may be tailored, as discussed in Section 2.3 below. 

 
Figure 6. Steps in planning and performing a software readiness assessment. 

Plan 
Assessment

Prepare for 
Assessment

Conduct 
Assessment

Complete 
Assessment



 

12 

2.2.1 Plan the Assessment 

As discussed in Section 1, a software readiness assessment is chartered by a contractor or government 
person who has the authority to act on the assessment team’s recommendations. The person who 
charters the readiness assessment is called the sponsor. The sponsor selects the readiness assessment 
team lead. The team lead should be an experienced software developer or manager with experience 
leading software assessments and with the appropriate domain expertise for the software to be 
assessed. The team lead, with the sponsor’s approval, selects the remaining team members. The team 
members should be experienced software developers or managers with the appropriate domain 
expertise for the software to be assessed. The assessment team may consist of personnel outside of or 
within the program, as long as they are independent of the personnel responsible for the development 
of the products under review. The software readiness assessment may be conducted as a software-
only risk assessment, as part of a program independent review, or in preparation for a program 
milestone or gated event. 

The assessment team tailors the assessment scope, objectives, and criteria to be consistent with the 
requirements of the contract, the magnitude of the software effort in the program, the program phase, 
the software development life cycle model, specific program terminology, and any other constraints 
imposed upon the assessment. Planning should include review of action items from previous software 
assessments and other gated events to determine if the actions have been closed, or that they continue 
to be worked and have a valid closure plan. The results of this review should be used in the tailoring 
of the criteria for the current assessment. 

The output of the planning process is a documented assessment plan that includes: 

 The tailored assessment criteria  

 The resources required for the assessment, including: 

- Training required for the assessment team  

- Orientation for the software development team 

- Support from the software development team 

- Tools for use in assessment (e.g., spreadsheets for criteria and evidence tracking, risk, 
cost, schedule analysis tools) 

 The estimated cost, schedule, and duration of the assessment 

 The logistics of the assessment, including access to facilities and the electronic repositories or 
tools containing the objective evidence 

 The disposition of the assessment team’s materials at the conclusion of the assessment 

 Whether the assessment team will provide risk mitigation recommendations as part of the 
findings 

 Any other special considerations 

The assessment plan is approved by the sponsor and any other required stakeholders to obtain 
commitment to the plan. After the plan is approved, preparation for the assessment can begin. 



 

13 

2.2.2 Prepare for the Assessment 

The success of a readiness assessment depends on the quality and preparation of the readiness 
assessment team. It is the responsibility of the assessment team leader to select qualified members of 
the team and to ensure that they receive any necessary training to participate on the team. Training 
may include presentations by the contractor to familiarize the assessment team with the program. 
Assessment team members may need to be trained in the tools that the team will use in the 
assessment. To be effective, team members should be committed to the assessment from the planning 
stage through conduct and completion. 

The assessment team provides orientation to the software development team to communicate the 
scope of the assessment. The assessment team works closely with the program’s software 
development team to obtain access to the objective evidence that the assessment team requires. 

A major component of performing a software readiness assessment is the evaluation of objective 
evidence that activities are being performed as required by the program’s statement of work and the 
contractor’s organizational processes. Sources of objective evidence can include electronic 
repositories, presentations, documents, and interviews. Objective evidence includes artifacts that are 
the required output of the processes executed. For example, the objective evidence that software 
requirements are developed is the existence of software requirements in a requirements management 
tool, along with bi-directional traceability and identified verification methods. The objective evidence 
that peer reviews are conducted is the documented minutes from the peer reviews showing that the 
required personnel were in attendance, adequate preparation was performed, reasonable findings were 
documented, and additionally, open items from the peer review are tracked through successful 
closure. The criteria in Section 0 describe the quality attributes of the objective evidence for 
processes, products, and resources. 

Preparation for a software readiness assessment largely consists of identifying the sources of the 
objective evidence and obtaining access to those sources. The readiness assessment team may need to 
work with the software developers to explain what constitutes objective evidence for the criteria. The 
readiness team may choose to use a tool, such as a spreadsheet, to catalogue the evidence used in the 
assessment. This evidence may then be mapped to the tailored assessment criteria to demonstrate 
whether the criteria have been satisfied. 

Preparation should include a presentation by the software development team to the software readiness 
assessment team and other stakeholders. This is an opportunity for the software development team to 
explain the purpose of the software under development, the life cycle model and processes in use on 
the program, the current status of the development, and why they believe that software development 
is ready to move to the next phase. It is also an opportunity for the software readiness assessment 
team to ask clarifying questions about the objective evidence that they are seeking. 

The output of the preparation process is a qualified and trained assessment team, a set of tools (e.g., 
spreadsheets with tailored assessment criteria) to facilitate the assessment, and the identification of 
and access to the objective evidence needed for the assessment. The team has access to all the 
objective evidence required for the assessment, and the program’s software team is prepared to 
discuss the evidence with the assessment team. 

2.2.3 Conduct the Assessment 

The assessment team evaluates the objective evidence to determine compliance with required product, 
process, and resource criteria, and notes the degree to which the criteria are met. If evidence is 
missing for an activity or if the evidence shows poor compliance with the criteria, the team 
documents the gap.  



 

14 

The assessment team should leverage the results of peer reviews and other product evaluations. Since 
peer reviews have been proven to be one of the most important factors in the quality of software 
products, it is important that the assessment team pay particular attention to the quality and 
effectiveness of the peer review process. The results of all product evaluations should be a key factor 
in the assessment. 

After performing an initial review and analysis of the evidence, the assessment team should review 
their findings with the software team. The software team may be able to provide additional evidence 
that was overlooked the first time. This process may iterate several times. 

The determination of how well the objective evidence supports the criteria is based on the 
experienced judgment of each member of the assessment team and the consensus of the entire team, 
for each criterion. Rating worksheets and automated support tools can facilitate the team’s decision-
making process by presenting necessary data in a concise, well-organized manner. The team lead 
facilitates the process of achieving team consensus and the team’s findings are documented.  

Where gaps exist between the program’s performance and the criteria, the team makes an assessment 
of the risks that the gap produces. Since the criteria represent best industry practices, deviations from 
the criteria suggest risks to the program. The assessment team synthesizes the deficiencies for 
individual criteria into higher level findings and for each finding, determines the associated issues and 
risks. The synthesis occurs both within and across products, processes, and resources. Based on the 
risks, the readiness assessment team makes a summary assessment of the risk of proceeding, as 
defined in Section 1.4.  

If requested by the sponsor, the risk assessment includes recommendations for how to handle the 
risks. Some risks may require mitigation or contingency plans with associated cost and schedule 
implications. The assessment team documents the risks and risk handling recommendations.  

The output of the assessment is the documented findings, risks, and issues, and the summary risk 
assessment.  

2.2.4 Complete the Assessment 

The readiness assessment team communicates its findings, risks, and issues, and summary risk 
assessment to the sponsor and other stakeholders. The sponsor determines any follow-up actions for 
the readiness assessment team. 

The readiness assessment team archives or disposes of the team’s working papers, as agreed to in the 
plan. The readiness assessment team documents any lessons learned for use in future readiness 
assessments. 

2.3 Tailoring 

This document is meant to be tailored when applied to ensure that only necessary and cost-effective 
assessments are conducted. The tailoring should be based on the life cycle, nomenclature, and 
processes of the program being assessed. In each application, the assessment should be tailored to the 
specific needs of a particular program or program phase and life cycle model used. Tailoring is the 
responsibility of the assessment team, under the approval of the assessment sponsor. The sponsor may 
provide suggested tailoring to assist in identifying the areas considered the highest risk for a particular 
contract. Both the assessment process and the criteria of the assessment may be tailored.  



 

15 

The software readiness assessment process can be tailored to address a variety of attributes, such as 
program size, software criticality, and resource availability. Care should be taken to reduce the 
formality of, or eliminate tasks that add unnecessary costs or do not add value to the process or the 
product. For instance: 

 The size of the assessment team should be scaled to the size of the program. For a very small 
program, the assessment team might consist of only one person. 

 Organizing a small internal assessment team can be as simple as sending an email request. An 
assessment team that is comprised of government, prime, and supplier personnel may require 
more formality to organize.  

 Evidence may take different formats (e.g., paper vs. electronic) depending on the assessment 
team’s access to and familiarity with the repositories containing the artifacts. As an example, 
if the assessment team has access to all the repositories, the evidence might exist only in 
electronic format, whereas a team consisting of personnel from multiple organizations may 
operate more effectively with some evidence being provided in paper format.  

 The output of an assessment of non-mission critical software may be provided in an informal 
meeting with the sponsor. An assessment for mission critical software, however, may require 
formal outputs in the form of documented presentations. 

The criteria for the assessment may also be tailored. The ultimate goal of tailoring is not to dilute the 
criteria, but rather to focus the assessment in such a way as to obtain the greatest value from it, 
consistent with the level of risk for the software. Tailoring of the criteria takes the form of:  

 Alteration of criteria to reflect program-familiar terminology or artifacts, such as combining 
the products (outputs) listed in the criteria to reflect the program’s required deliverables. 

 Addition of criteria to provide special focus consistent with program requirements. 

 Deletion of criteria when the activity is not applicable to the contracted program scope. 

 Alteration of the assessment points at which the tailored criteria are applied. 

  



 

16 

  



 

17 

3. Process, Product, and Resource Perspectives 

As already described in Section 2, software development may follow many different life cycle 
models, software development methodologies and programming paradigms. In this section we present 
three different perspectives or viewpoints on space segment software development: product, process, 
and resource.  

Each of these perspectives is intended to illuminate best software development practices and illustrate 
the level of maturity expected at each assessment point (e.g., SAR, BTR). The assessment criteria and 
assessment points are intended to span all software life cycle models, but there may be cases where a 
criterion does not apply. For example, some criteria in the early life cycle assessment (SAR) may 
apply to an iterative or agile development but not to a waterfall development. These types of 
conditional situations are clarified by the use of terminology like “for any code developed by SAR” 
or “for any test procedures developed by SAR.” In these cases the criteria should be applied only to 
the work that has been completed at that point. At BTR, referring to the SAR criteria may provide 
additional context that will clarify the intent of the BTR criteria. 

A number of other conventions have also been used in developing the specific wording of the 
assessment criteria. The intent of the criteria is to establish “what” should to be done, but not 
necessarily “how” it should be done. Criteria that refer to documents or plans (e.g., software 
development plan or software architecture description) may be satisfied either by a document or by 
data in a tool or electronic repository. General terms such as “assessment” or “evaluation” are used 
rather than “appraisal” to avoid any connotation of CMMI or SCAMPI. “Software product 
evaluation” is used as a general term for product reviews which can take different forms. “Peer 
review” refers to a more specific type of product review with specific expectations. The glossary in 
Appendix A defines and clarifies many of the terms used in the tables.  

3.1 Assessment Criteria for the Product Perspective 

Table 2 contains the criteria for SRAs for the product perspective. It contains four columns. The first 
column identifies the software product being assessed. The second column identifies an aspect of the 
product to be assessed. The third column provides the assessment criteria for the Software 
Architecture Readiness (SAR) for that product and area. The last column provides the assessment 
criteria for the Build Turnover Readiness (BTR) for that product and area.  

Note that some software plans (e.g., software development plan, software configuration management 
plan) are in Table 3, because they are the output of the planning process. Test plans, however, are in 
Table 2, along with the other testing products. 

3.2 Assessment Criteria for the Process Perspective 

Table 3 contains the criteria for SRAs for the process perspective. It contains four columns. The first 
column identifies the software process being assessed. The second column identifies an aspect of the 
process to be assessed. The third column provides the assessment criteria for the Software 
Architecture Readiness (SAR) for that process and area. The last column provides the assessment 
criteria for the Build Turnover Readiness (BTR) for that process and area.  

3.3 Assessment Criteria for the Resource Perspective  

Table 4 contains the criteria for SRAs for the resource perspective. It contains four columns. The first 
column identifies the software resource being assessed. The second column identifies an aspect of the 
resource to be assessed. The third column provides the assessment criteria for the Software 
Architecture Readiness (SAR) for that resource and area. The last column provides the assessment 
criteria for the Build Turnover Readiness (BTR) for that resource and area.  



 

18 

Table 2. Assessment Criteria for the Product Perspective 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

System 
Requirements 

Specification 
Tree 

The system specification tree identifies all software 
specifications, and is consistent with the system 
architecture. The system specification tree is 
complete, baselined, stable, and released. 

The system specification tree is complete, current, 
baselined, stable, and released. 

System 
Requirements 

Requirements 
Allocated to 
Software 

System requirements allocated to software 
(including software Key Performance 
Parameters/Key Performance Measures 
(KPPs/KPMs); computer resource margins; and 
functional, performance, and specialty engineering 
requirements) are complete, baselined, stable, and 
released. Analysis or modeling substantiates the 
allocation of quantitative performance requirements 
to software, hardware, and people. 

System requirements allocated to software are 
complete, current, baselined, stable, and released. 
The risks associated with any late or unincorporated 
changes have been assessed, documented, and 
communicated; an acceptable risk handling plan is 
in place.  

System 
Requirements 

Requirements 
Allocation Matrix 

The bi-directional mapping between the software 
items in the system architecture and the system 
requirements allocated to software is complete, 
baselined, stable, and released. 

The bi-directional mapping between the software 
items in the system architecture and the system 
requirements allocated to software is complete, 
current, baselined, stable, and released. 

System 
Requirements 

Specialty 
Engineering 

System specialty engineering requirements 
(including reliability, maintainability, and availability; 
safety; information assurance; and human systems 
engineering) are defined, appropriately allocated to 
software, and complete, baselined, stable, and 
released. Analysis or modeling substantiates the 
allocation of quantitative specialty engineering 
requirements to software, hardware, and people. 

System specialty engineering requirements 
allocated to software are complete, current, 
baselined, stable, and released. 

System 
Requirements 

Data 
Management 

System requirements for management of on-board 
and ground data are defined, appropriately allocated 
to software, and complete, baselined, stable, and 
released. 

System requirements for management of on-board 
and ground data are complete, current, baselined, 
stable, and released.  



 

19 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

System 
Requirements 

Fault 
Management 

System requirements for management of on-board 
and ground faults, including safe mode, are defined, 
appropriately allocated to software, and complete, 
baselined, stable, and released. 

System requirements for management of on-board 
and ground faults are complete, current, baselined, 
stable, and released. 

System 
Requirements 

Reprogramability System requirements for reprogrammability are 
defined, appropriately allocated to software, and 
complete, baselined, stable, and released. 

System requirements for reprogrammability are 
complete, current, baselined, stable, and released. 

System Interface 
Requirements 

System 
Interfaces 

The space-to-ground, space-to-space, and ground-
to-ground logical interface definitions are complete, 
baselined, stable, and released. 

The space-to-ground, space-to-space, and ground-
to-ground physical interface definitions are 
complete, current, baselined, stable, and released. 
The risks associated with any late changes have 
been assessed, documented, and communicated; 
an acceptable risk handling plan is in place.  

System 
Architecture 

Fault 
Management 

System architecture addresses overall fault 
management and the Operations Concept 
(OpsCon) is sufficiently defined to allocate design to 
software architecture. Fault management is 
identified as a critical component of the architecture 
requiring the highest integrity level. 

Fault management and recovery has been 
validated, verified and stress tested in an 
operationally relevant environment. The highest 
integrity level analysis has been completed; static 
analyses of state variable transition models and 
stress testing of dynamic timing risks have been 
successful. As-built design, assumptions, rationale, 
and operational environment and performance limits 
have been documented. All risks identified in 
criticality analyses have been mitigated. 

System 
Architecture 

Traceability System architecture components are bi-directionally 
mapped to system, subsystem, or element 
requirements. The bi-directional traceability is 
complete, baselined, stable, and controlled. 

The system architecture to system, subsystem or 
element requirements bi-directional traceability is 
complete, current, baselined, stable, and controlled. 

System 
Architecture 

Completeness System architecture trade studies are complete and 
documented. System architecture decisions have 
been finalized. The system architecture description 
is complete, baselined, stable, and released, and 
addresses hardware, software, and data or 
databases.  

The system architecture description is complete, 
current, baselined, stable, and released. The risks 
associated with any late changes have been 
assessed, documented, and communicated; an 
acceptable risk handling plan is in place.  



 

20 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

System 
Operations 
Concept 

Completeness The system OpsCon is established and is 
sufficiently mature to enable the software team to 
validate the software architecture. All operations are 
identified and described, including nominal and off-
nominal scenarios. There are no open issues or 
inconsistencies. High risk areas are described to a 
very low level. The system OpsCon is complete, 
baselined, stable, and released. 

The system OpsCon is completed, current, 
baselined, stable, and released. Late changes may 
indicate there are issues with the final 
system/software implementation or its intended use 
was not adequately described in the initial 
architecture phase. 

System 
Scenarios 

Completeness System scenarios affecting the software 
requirements or software architecture are complete, 
baselined, stable, and controlled. System scenarios 
(e.g., use cases and threads) implement the system 
operations concept. 

System scenarios that affect the software 
requirements or software architecture are complete, 
current, baselined, stable, and controlled.  

System 
Scenarios 

Test Like You Fly System scenarios including “Test Like You Fly” 
(TLYF) and “Day in the Life” (DITL) are defined, 
baselines, stable, and controlled. 

System scenarios that affect the software 
requirements or software architecture are complete, 
current, baselined, stable, and controlled and 
specifically include TLYF and DITL scenarios.  

Configuration 
Item List 

Completeness The software configuration item list is complete, 
baselines, stable, and controlled. 

The software configuration item list is complete, 
current, baselined, stable, and controlled. 

Algorithm Design 
Document 

Completeness The algorithm design document is complete, 
baselined, stable, and released. The algorithms are 
defined to an appropriate level of detail for software 
development.  

The algorithm design document is complete, 
current, baselined, stable, and released. 

Software Risk List Completeness Software technical risks have been identified, 
assessed and prioritized. Effective mitigation or 
contingency plans are in place and being executed. 
Program management is able to fund either the 
mitigation activity or the realized risk. 

Technical risks associated with this build are retired. 
If any technical risks associated with this build have 
not been retired, the risks and their impacts have 
been communicated to the receiving organization. 



 

21 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software 
Requirements 

Completeness In addition to the system requirements allocated to 
software, requirements analysis and derivation has 
been done to identify and capture the lower-level 
software requirements. Quality attributes and critical 
software requirements, including performance, 
security, interface and functional requirements have 
been defined.  

The software requirements are complete, current, 
baselined, stable, and released. The risks 
associated with any waived, late or incomplete 
requirements have been assessed, documented 
and communicated; an acceptable risk handling 
plan is in place.  

Software 
Requirements 

Interfaces Critical interface requirements are documented and 
allocated to software architecture components. 

The software interface requirements are completed, 
current, baselined, stable, and released. The risks 
associated with any waived, late or incomplete 
interface requirements have been assessed, 
documented and communicated; an acceptable risk 
handling plan is in place.  

Software 
Requirements 

Standards The software requirements include specification of 
all applicable standards (e.g., human-system 
interface, backwards compatibility, network 
protocols, product interoperability, middle-ware). 

The software requirements include specification of 
all applicable standards.  

Software 
Requirements 

Fault 
Management 

The software specifications include all applicable 
fault management and error handling requirements. 
For flight software this includes any autonomous 
responses to spacecraft hardware failures or 
anomalies. 

The software requirements include specification of 
all applicable fault management and error handling 
requirements. No requirements for fault 
management or error handling have been waived.  

Software 
Requirements 

Traceability Defined software requirements have bi-directional 
traceability with the parent requirements allocated to 
software and are complete, baselines, stable, and 
controlled. 

Software requirements are consistent with the as-
built system, have bi-directional traceability with the 
parent requirements allocated to software, and are 
complete, current, baselines, stable, and controlled. 

Software 
Requirements 

Completeness Analysis has been performed that demonstrates that 
the software requirements satisfy their parent 
requirements and are consistent with documented 
operations concepts. 

Software requirements completely satisfy all parent 
requirements allocated to software for this build and 
support the baselined operations concept. 

Software 
Requirements 

Verifiability Analysis has been performed demonstrating the 
software requirements can be verified. 

The as-built software requirements can be verified. 



 

22 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software 
Requirements 

Validation Analysis has been performed validating the software 
requirements meet the intent of the user 
requirements and operations concept. 

The as-built software requirements meet the intent 
of the user requirements and operations concept. 

Software 
Architecture 

Software 
Architecture 
Views 

The software architecture principles (e.g., 
partitioning rationale, protection mechanisms, 
layering, integrated error/fault management) are 
clearly documented and consistently realized in the 
software architecture views. Use cases, state 
transition diagrams, etc. are used depending on the 
architectural modeling methods selected.  

The software architecture views are complete, 
current, baselines, stable, and controlled. The risks 
associated with any late or unincorporated changes 
have been assessed, documented and 
communicated; an acceptable risk handling plan is 
in place.  

Software 
Architecture 

Software 
Architecture 
Description 

The software architecture description contains 
rationale for selection of software architecture views 
and those views are consistent with system 
requirements and needs. 

The software architecture description is complete, 
current, baselined, stable, and released.  

Software 
Architecture 

Software 
Architecture 
Components 

Software architecture components are mapped to 
the system architecture components (e.g., via a 
deployment diagram).  

The mapping of software architecture components 
to the system architecture components is complete, 
current, baselines, stable, and controlled. 

Software 
Architecture 

Consistency with 
Software 
Requirements 

The software architecture is consistent with the 
software requirements and system needs.  

The as-built software architecture is consistent with 
the software requirements and system needs.  

Software 
Architecture 

Design 
Standards and 
Practices 

The software architecture conforms to the program’s 
architectural design standards and practices. 

The software architecture conforms to the program’s 
architectural design standards and practices. 

Software 
Architecture 

Documentation Software architecture trade studies are complete 
and documented. Software architecture decisions 
have been documented. Software architecture 
description is complete, baselined, stable, and 
released.  

The software architecture description is complete, 
current, baselined, stable, and released. The 
software architecture description reflects the as-built 
system and is consistent with the as-built software. 
The risks associated with any late or unincorporated 
changes have been assessed, documented and 
communicated; an acceptable risk handling plan is 
in place.  



 

23 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software 
Architecture 

Algorithm 
Allocation 

The algorithms defined in the algorithm design 
document are allocated to the software architecture 
components. 

The algorithms allocated to this build are 
implemented in the software architecture 
components. 

Software 
Architecture 

Data Model The software architecture defines the conceptual 
data model. The software architecture defines the 
logical data model for data in external interfaces. 
The proposed methods of operation (e.g., 
transactions, retrievals, updates) are consistent with 
the anticipated usage.  

The physical data model is complete, current, 
baselined, stable, and released. The risks 
associated with any late or unincorporated changes 
have been assessed, documented and 
communicated; an acceptable risk handling plan is 
in place.  

Software 
Architecture 

Communication 
Patterns 

The software architecture defines communication 
patterns (e.g., OSI seven layer model, CCSDS) for 
space-to-ground, ground-to-ground and space-to-
space interfaces.  

The communication pattern descriptions are 
complete, current, baselined, stable, and released. 
The risks associated with any late or unincorporated 
changes have been assessed, documented and 
communicated; an acceptable risk handling plan is 
in place.  

Software 
Architecture 

Hardware 
Compatibility 

The software architecture is compatible with target 
hardware constraints and assumptions. 

The software architecture is updated and 
documented in accordance with the actual target 
hardware.  

Software 
Architecture 

Testability Architectural features required for all test phases 
are incorporated in the software architecture (e.g., 
insertion and observation of faults, observation of 
behavior and data results, hooks for drivers, 
simulators, test data analysis tools). 

Software testability features are complete, current, 
baselined, stable, and released.  

Software 
Architecture 

NDI Selection NDI (e.g., COTS, GOTS, open source, reuse) are 
selected based on trade study results and the 
computing resource requirements have been 
coordinated with the hardware selection team. 

The selected NDI, as documented in the software 
architecture, is incorporated into the as-built 
software.  

Software 
Architecture 

NDI Analysis NDI analysis (e.g., ability to meet requirements, 
reliability, maturity, availability, suitability for 
incorporating in architecture, COTS vendor viability)  
is complete. 

NDI analysis is complete, current, baselines, stable, 
and controlled. The risks associated with any late or 
unincorporated changes have been assessed, 
documented and communicated;  an acceptable risk 
handling plan is in place.  



 

24 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software 
Algorithms 

Completeness Preliminary software algorithms are identified. 
Critical software algorithms have been prototyped in 
a target-like environment.  

The software algorithms are implemented in 
accordance with the algorithm documentation. 

Software 
Architecture 

Traceability Bi-directional traceability between software 
architecture components and software requirements 
is complete, baselines, stable, and controlled. 

Bi-directional traceability between software 
architecture components and software requirements 
is complete, current, baselines, stable, and 
controlled. 

Software 
Analyses 

Resource 
Utilization 

Initial resource utilization analyses (e.g., for 
processor throughput, memory, storage, and 
bandwidth) has been performed for all software 
items. Initial resource utilization budgets are 
allocated to software items and are consistent with 
margin requirements. If multiple software items 
share processor resources, allocations made total 
no more than 100% of the budget. Initial analyses 
demonstrate that the resource utilizations of each 
software item are within their budgets. 

Final analysis results, including measured resource 
utilization of each software item in the build, 
demonstrate that the as-built software meets all 
allocated resource utilization budgets (e.g., 
processor throughput, memory, storage, and 
bandwidth). 

Software 
Analyses 

Database Timing An initial database timing model is defined and 
demonstrates the ability of the database to meet the 
timing requirements.  

The database timing model reflects the as-built 
software. The database timing model takes into 
account database transactions, updates  and 
business rules under stressing scenarios in 
accordance with expected and off-nominal usage 
profiles. The database timing model has been 
evaluated using the as-built schema definitions and 
creation, backup and recovery scripts, and using 
validated and controlled command and telemetry 
data. Final analysis results demonstrate that the as-
built software for this build satisfies its database 
timing requirements.  

Software 
Analyses 

Timing 
Requirements 

An initial timing model is defined and demonstrates 
the ability of the software architecture to meet the 
timing requirements.  

The timing model reflects the as-built software. Final 
analysis results demonstrate that the as-built 
software for this build satisfies its timing 
requirements. 



 

25 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software 
Analyses 

Software 
Assurance 
Cases 

Assurance cases substantiate the ability of the 
software architecture to meet its critical allocated 
requirements. Modeling, prototyping, simulation or 
other analysis methods are used to demonstrate 
that the software architecture can meet critical 
requirements (e.g., performance, KPPs, margins, 
critical technology elements, safety, information 
assurance, dependability, reliability) without loss of 
software integrity even under stressing conditions. 
Functional and performance shortfalls are 
communicated and resolved.  

Evidence substantiates the ability of the software to 
meet its critical allocated requirements (e.g., 
performance, KPPs, margins, critical technology 
elements, safety, information assurance, 
dependability, reliability) without loss of software 
integrity, even under stressing conditions is included 
in the assurance cases. The assurance cases are 
complete, current, baselines, stable, and controlled. 
Software assurance artifacts are maintained under 
CM to facilitate regression testing. 

Software 
Analyses 

Reliability An initial software reliability model is defined 
demonstrating the feasibility of the software 
architecture to meet the reliability requirements. A 
plan exists for collecting appropriate data during 
testing to be used in a software reliability prediction 
model to demonstrate the as-built code meets the 
allocated reliability requirements. 

Analysis demonstrates that the as-built code for this 
build meets the allocated reliability requirements. 

Software 
Analyses 

Criticality 
Analysis Report 

A multi-level integrity scheme is established and a 
criticality analysis is completed mapping system 
requirements and architecture elements to the 
established integrity levels. At SAR, the mapping 
extends to the software and security requirements, 
interface requirements and software architecture 
elements or components. The analyses addresses 
the traceability, correctness, consistency, 
completeness, accuracy, readability and testability 
of the system and software requirements. 

Criticality analysis has been updated from the prior 
report. Analyses of all identified critical elements 
have been updated for the as-built software 
requirements, interfaces, components, test plans 
and test procedures in accordance with their 
criticality level. 

Software Design Data Model Initial implementation of the data model in the 
executable architecture is defined and validated for 
feasibility through prototyping, modeling, or 
simulation. 

The implemented data model is robust, complete, 
current, baselined, stable, and released. 



 

26 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software Design Communication 
Patterns 

Initial implementation of the communication patterns 
in the executable architecture is defined and 
validated for feasibility through prototyping, 
modeling, or simulation. 

Implemented communication patterns are robust, 
complete, current, baselined, stable, and released. 

Software Design Documentation Software design completed to date is documented. Software design document is complete, current, 
baselined, stable, and released.  

Software Design Interfaces Logical interfaces are designed and are consistent 
with required standards. 

Software interface designs are complete, current, 
baselined, stable, and released.  

Software Design Hardware 
Compatibility 

The software design completed to date is 
compatible with target hardware constraints and 
assumptions. 

The software design has been updated in 
accordance with the actual target hardware.  

Software Design Dependability Initial implementation of information assurance, 
safety, and Reliability, Maintainability, Availability 
(RMA) requirements in the executable architecture 
validates feasibility of meeting requirements through 
prototyping, modeling, or simulation. 

The implemented software design meets all 
information assurance, safety, and RMA 
requirements. The risks associated with any late or 
unincorporated changes have been assessed, 
documented and communicated; an acceptable risk 
handling plan is in place.  

Software Design Fault 
Management 

The initial implementation of fault and error 
management in the executable architecture is 
defined and validated for feasibility through 
prototyping, modeling, or simulation. 

The as-built fault and error management design and 
code is robust, complete, current, baselined, stable, 
and released. 

Software Design Flight Software 
Upload 

The initial design of flight software upload capability 
(e.g., ground and on orbit) in the executable 
architecture is demonstrated to meet system needs 
through prototyping, modeling, or simulation. 

The as-built flight software upload capability is 
complete, current, baselined, stable and released 
and has been demonstrated to meet system needs. 

Software Design Performance The initial implementation of the executable 
architecture validates feasibility of meeting 
performance requirements through prototyping, 
modeling, or simulation. 

The as-built software design meets all performance 
requirements. The risks associated with any late or 
unincorporated changes have been assessed, 
documented and communicated; an acceptable risk 
handling plan is in place.  

Software Design Traceability Bi-directional traceability between software design 
components and software requirements is complete, 
baselines, stable, and controlled. 

Bi-directional traceability between software design 
components and software requirements is complete, 
current, baselines, stable, and controlled. 



 

27 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Source Code Coding 
Standards and 
Practices 

A plan exists for demonstrating conformance to the 
coding standards and practices. Preferably, the 
conformance to coding standards and practices is 
enforced by tools. For any code completed by SAR, 
analysis has been performed that demonstrates that 
the source code for this build conforms to the 
program’s coding standards and practices.  

Analysis has been performed that demonstrates that 
the source code for this build conforms to the 
program’s coding standards and practices.  

Source Code Reuse Code Reuse code selected by the SAR has been 
analyzed to determine a) if it meets the coding 
standards and practices; b) it fits into the software 
architecture; c) it can be upgraded to satisfy new 
requirements, and d)  the risk of its use. The 
documentation of the code has been reviewed to 
determine its pedigree as part of the assessment of 
risk. 

Reuse code for this build meets the coding 
standards and practices, fits into the software 
architecture, and if needed, has been upgraded to 
satisfy new requirements. Any risk of its use has 
been mitigated.  

Source Code Consistency Any code completed by the SAR is consistent with 
requirements, architecture, and design. 

Source code for this build is consistent with 
requirements, architecture, and design. 

Source Code Quality For any code completed by SAR, code analysis has 
been performed to identify memory leaks, 
vulnerabilities, type mismatches, dead code, etc., 
using automated structure analysis, static analysis, 
dynamic analysis, and complexity analysis, as 
appropriate. The identified risk mitigations are 
planned or complete. 

Code analysis has been performed to identify 
memory leaks, type mismatches, dead code, etc., 
using automated structure analysis, static analysis, 
dynamic analysis, and complexity analysis, as 
appropriate. The identified risks have been 
mitigated. 

Source Code Information 
Assurance 

For any code completed by SAR, code analysis has 
been performed to identify vulnerabilities. Selected 
COTS software has been analyzed to identify 
vulnerabilities. The identified vulnerabilities have 
been documented and plans for mitigation have 
been developed. 

Code analysis has been performed to identify 
vulnerabilities, and COTS software has been 
analyzed to identify vulnerabilities. The identified 
vulnerabilities have been documented and 
mitigated. 

Source Code Traceability Any code completed by the SAR is traceable to the 
software design. 

Source code components are traceable to software 
design. 



 

28 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software Unit 
Test Cases 

Coverage For any code developed by SAR: the unit test cases 
executed all statements and branches in the code. 
For any exceptions to this coverage (both new and 
reused code) the risk has been assessed, 
documented, and communicated. 

The unit test cases executed all statements and 
branches in the code. For any exceptions to this 
coverage (both new and reused code) the risk has 
been assessed, documented, and communicated. 

Software Unit 
Test 
Documentation 

Completeness For any software unit test cases that have been 
executed by SAR, the software unit test cases, 
results, analyses, and other artifacts are complete, 
current, and controlled. 

Software unit test cases, results, analyses, and 
other artifacts are complete, current, and controlled. 

Configuration 
Item List 

Design Validation For any code developed by SAR, unit test results 
demonstrate the units have correctly implemented 
their design.  

Unit test results demonstrate the units correctly 
implemented their design.  

Software Unit 
Integration Test 
Documentation 

Completeness For software unit integration test cases that have 
been executed by SAR, software unit integration 
plans, cases, procedures, reports and artifacts are 
complete, baselines, stable, and controlled. 

Software unit integration plans, cases, procedures, 
reports and artifacts are complete, current, 
baselines, stable, and controlled. 

Software Unit 
Integration Test 
Cases 

Interfaces For any code developed by SAR, interfaces are 
executed for values within, on and out of bounds 
and are demonstrated to meet software design and 
system dependability requirements. 
Behavior of interfaces between components is 
accurately reflected in the interface documentation. 

Interfaces are executed for values within, on and out 
of bounds and are demonstrated to meet software 
design and system dependability requirements. 
Behavior of interfaces between components is 
accurately reflected in the interface documentation. 

Software Unit 
Integration Test 
Results 

Software 
Threads 

Software threads within the executable architecture 
are successfully executed, prototyped, modeled or 
simulated end-to-end for both nominal and off-
nominal conditions. 

Software threads allocated to the build have been 
successfully executed end-to-end for both nominal 
and off-nominal conditions. 

Software/ 
Hardware 
Integration Test 
Plan 

Hardware 
Compatibility 

General software/hardware integration concepts are 
defined and documented. 

The executable object code is compatible with the 
target hardware. The software/hardware integration 
and test plan is complete, current, baselines, stable, 
and controlled. 



 

29 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software/ 
Hardware 
Integration Test 
Cases 

Interfaces For any code developed by SAR, the test cases 
include execution of interfaces for values within, on 
and out of bounds and demonstration that the 
interfaces meet software design and system 
dependability requirements. The test cases include 
demonstration that the behavior of the interfaces, 
including timing, between hardware and software 
items satisfies the interface documentation. 

Interfaces are executed for values within, on and out 
of bounds and are demonstrated to meet software 
design and system dependability requirements. 
The behavior of the interfaces, including timing, 
between hardware and software items satisfies the 
interface documentation. 

Software/ 
Hardware  
Integration Test 
Cases 

Test Like You Fly Plans for software TLYF and DITL testing in the 
software/hardware integration test environment are 
defined. For critical software, analyses and testing 
in a representative hardware and software 
environment has validated the ability of the 
architecture to satisfy the software TLYF and DITL 
cases. 

Software TLYF and DITL scenarios have been 
executed successfully in the software/hardware 
integration test environment. 

Software/ 
Hardware 
Integration Test 
Cases 

Stress Testing Plans for the software stress testing in the 
software/hardware integration test environment are 
defined. For critical software, analyses and testing 
in a representative hardware and software 
environment has validated the ability of the 
architecture to satisfy the software stress cases. 

Software stress scenarios have been successfully 
executed for CPU and data-bus throughput, 
concurrency, simultaneous services, and long 
duration stability testing in the software/hardware 
integration test environment.  
Software stress scenarios have been successfully 
executed within, at and above the expected 
(designed) performance requirements. 

Software/ 
Hardware  
Integration Test 
Cases 

Dependability Plans for the software dependability testing in the 
software/hardware integration test environment are 
defined. For critical software, analyses and testing 
in a representative hardware and software 
environment has validated the ability of the 
architecture to satisfy the software dependability 
cases. 

Software fault management, fault tolerance and 
graceful degradation scenarios have been 
successfully executed in the software/hardware 
integration test environment. 

Software/ 
Hardware 
Integration Test 
Documentation 

Completeness Top-level software/hardware integration plans are 
defined and documented. 

Software/hardware integration plans, cases, 
procedures, reports and artifacts are complete, 
current, stable, baselined and controlled. 



 

30 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software/ 
Hardware 
Integration Test 
Results 

Software 
Threads 

Software/hardware threads have been defined and 
successfully prototyped, modeled or simulated end-
to-end for both nominal and off-nominal conditions. 

Software/hardware threads allocated to the build 
have been successfully executed end-to-end for 
both nominal and off-nominal conditions. 

Software Test 
Plan 

Regression 
Testing 

The software test plan clearly describes how 
regression testing will be performed for any 
previously verified software that is modified or 
interfaces with new or modified code. The software 
test plan describes the plans for developing a suite 
of regression tests for this software that exercises 
all functions in both nominal and off-nominal test 
cases. 

The software test plan contains regression tests for 
any previously verified software that is modified or 
interfaces with new or modified code. The software 
test plan describes a suite of regression tests for 
this software exercising all functions in both nominal 
and off-nominal test cases. This suite of regression 
tests has been developed and tested. 

Software Test 
Plan 

Verification Plans Verification methods are adequate to verify the 
software requirements. The plan for verification is 
realistic and will fully verify each software 
requirement. Verification methods in the software 
test plan match the verification methods 
documented in the software requirements and 
interface requirements specification. 

The verification methods in the software test plan 
are complete, current, baselined, stable, and 
released. The plan for verification is realistic and 
fully verifies each software requirement.  

Software Test 
Plan 

Software Under 
Test 

The software test plan explicitly defines the software 
under test. If the software is verified incrementally, 
the plans for regression testing of requirements 
verified during incremental testing are clearly 
defined. 

The defined software under test is consistent with 
the as-built software. The software test plan 
continues to contain plans for regression testing of 
requirements verified during incremental 
development. 

Software Test 
Plan 

Fidelity of 
Verification 
Environments 

Software verification environments defined in the 
test plan have sufficient fidelity to verify the software 
requirements and are representative of the 
operational environment (e.g., all interfaces for the 
software with operational data rates, protocols, and 
timing). 

The as-built software verification environments are 
consistent with the software test plan.  



 

31 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software Test 
Plan 

Maintenance of 
Verification 
Environments 

Plans exist for hardware preventive maintenance 
and calibration of the software verification 
environments. Any hardware in use at SAR has 
received maintenance and/or calibration updates as 
needed. 

Any required preventative maintenance and/or 
calibration has been performed for all software test 
environments. 

Software Test 
Plan 

Anomaly 
Handling 

The software test plan clearly describes how test 
anomalies will be handled. Discrepancy reports are 
required for each anomaly encountered. A test log 
entry is required to document each test deviation. 
The software test plan also clearly describes how 
retesting will be handled. 

The software test plan clearly describes how test 
anomalies and retesting are handled, including 
discrepancy reporting and test logging.  

Software Test 
Plan 

Traceability Bi-directional traceability between the software 
requirements and the tests defined in the software 
test plan is documented. 

Bi-directional traceability between the software 
requirements and the tests defined in the software 
test plan is documented.  

Software Test 
Plan 

Completeness The software test plan is defined, documented and 
controlled depending on the development life cycle 
model. 

All updates to the software test plan are completed, 
current, baselined, stable, and released. The 
updates have not compromised the full verification 
of the software requirements. 

Software Test 
Procedures 

Objectives For any code developed by SAR, software test 
objectives have been clearly and comprehensively 
stated to achieve the goals of the test plan for the 
test to which the code belongs. 

Objectives of each qualification test case are clearly 
and comprehensively stated and achieve the goals 
of the test plan for the test to which each test case 
belongs. 

Software Test 
Procedures 

Test Cases For any code developed by SAR, test cases exist 
that cover both nominal and off-nominal scenarios 
and, stress input and output data rates and 
concurrency scenarios. For critical functions, test 
cases addressing scenarios outside the operational 
boundary are included. 

Test cases exist that cover both nominal and off-
nominal scenarios and, stress input and output data 
rates and concurrency scenarios. For critical 
functions, test cases addressing scenarios outside 
the operational boundary are included. 

Software Test 
Procedures 

Test Like You Fly Software/hardware threads (e.g., operations 
concept) for TLYF and DITL scenarios are defined. 

Test cases are representative of operations (e.g., 
TLYF, DITL, day and year roll-overs). The test 
cases include operational constants, databases, 
data rates, and an operationally representative 
hardware configuration. 



 

32 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software Test 
Procedures 

Flight Software 
Upload 

Software/hardware threads (e.g., operations 
concept) for flight software uploads are defined. 

Test cases exist that demonstrate the ability to 
upload changes to the flight software, including the 
correct operation of the software after upload and 
the ability to roll back to the previous software 
version. 

Software Test 
Procedures 

Regression 
Testing 

For any re-use code or code developed by SAR, the 
software test procedures include procedures for 
performing regression testing and are prepared 
according to the test plan. 

The software test procedures include procedures for 
performing regression testing and are prepared 
according to the test plan. 

Software Test 
Procedures 

Inputs For any code developed by SAR, inputs to each test 
procedure have been defined and are recognized by 
the test equipment, including data values, accuracy, 
precision, formats, data rates, file sizes, and timing. 

Inputs to each test procedure have been updated in 
accordance with as-built code and are recognized 
by the test equipment, including data values, 
accuracy, precision, formats, data rates, file sizes, 
and timing. 

Software Test 
Procedures 

Outputs For any code developed by SAR, output data from 
each test procedure are fully specified, including 
data values, accuracy, precision, formats, data 
rates, and timing. Output data is observable, and 
sufficient output data is recorded for performing the 
verification. The results are recorded and clearly 
demonstrate satisfaction or failure. 

Output data from each test procedure is fully 
specified, including data values, accuracy, 
precision, formats, data rates, and timing. Output 
data is observable, and sufficient data is recorded 
for performing the verification. The results are 
recorded and clearly demonstrate satisfaction or 
failure. 

Software Test 
Procedures 

Repeatability For any test procedures developed by SAR, the 
software test procedures for each test case are 
repeatable. Test setup, execution, and post-test 
clean-up steps are well defined. 

The software test procedures for each test case are 
repeatable. Test setup, execution, and post-test 
clean-up steps are well defined. 

Software Test 
Procedures 

Test Procedures For any test procedures developed by SAR, test 
procedure steps clearly define the action that the 
tester must take (stimulus), the response that is 
supposed to happen, and the pass/fail criteria. 

Test procedure steps clearly define the action that 
the tester must take (stimulus), the response that is 
supposed to happen, and the pass/fail criteria. 



 

33 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software Test 
Procedures 

Pass/Fail Criteria For any test procedures developed by SAR, pass 
criteria and failure criteria are clearly and 
unambiguously specified in each test procedure 
step or sequence of steps. Content and structure of 
input data are designed so that failures are clearly 
observable. 

Pass and failure criteria are clearly and 
unambiguously specified in each test procedure 
step or sequence of steps. Content and structure of 
input data are designed so that failures are clearly 
observable. 

Software Test 
Procedures 

Post Test 
Analysis 

For any test procedures developed by SAR, post-
test processing and data analysis pass/fail 
verification criteria are documented and repeatable. 

Post-test analysis steps and pass/fail verification 
criteria are documented and repeatable. 

Software Test 
Procedures 

Traceability For any test procedures developed by SAR, bi-
directional traceability between the test cases and 
software requirements to be verified in each test 
case is documented. For test cases verifying 
multiple requirements, bi-directional traceability 
between the software requirements and the test 
procedure steps where the requirements are verified 
is documented. 

Bi-directional traceability between the test cases 
and software requirements to be verified in each 
test case is documented. For test cases verifying 
multiple requirements, bi-directional traceability 
between the software requirements and the test 
procedure steps where the requirements are verified 
is documented. 

Software Test 
Procedures 

Completeness The software test procedures (prepared to date, if 
any) are in accordance with the associated tests 
defined in the test plan. The software test 
procedures are complete, baselines, stable, and 
controlled. 

The software test procedures for the build are in 
accordance with the software test plan and are 
complete, current, baselines, stable, and controlled. 

Software 
Verification 
Environment 

Validation Plans exist to validate the software verification 
environment before the start of software 
qualification test. 

The software verification environment was validated 
prior to the start of software qualification test to 
ensure it performs as needed.  

Software 
Verification 
Environment 

Maintenance Plans exist to perform all necessary maintenance 
and calibration of hardware in the software 
verification environment before the start of software 
qualification test. 

The hardware in the verification environments has 
had its routine preventive maintenance and all 
necessary calibration was performed prior to the 
start of software qualification testing. Any necessary 
maintenance or calibration needed during software 
qualification testing was performed in a controlled 
manner. 



 

34 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software 
Verification 
Environment 

Databases Plans exist to validate the contents of the databases 
used in the software verification environment before 
the start of software qualification test. 

All databases that are used in verifying the software 
requirements were controlled and validated prior to 
the start of software qualification test to ensure their 
contents are sufficient to verify the requirements. 

Software Test 
Results 

Procedure 
Execution 

N/A The software test procedures have been 
successfully executed, meet their objectives and 
verify their allocated requirements. The 
requirements verification document has been 
updated to reflect the testing results of this build. 

Software Test 
Results 

Regression 
Testing 

N/A Regression testing of software requirements has 
been performed for any previously verified software 
that has been modified. 

Software Test 
Results 

Regression 
Testing for 
Incrementally 
Verified 
Requirements 

N/A Regression testing of software requirements verified 
incrementally was performed with the complete set 
of software executing in an operationally 
representative hardware configuration.  

Software Test 
Results 

Requirements 
Verification 

N/A The software requirements have been fully verified 
according to the plan. For each test case, the 
verification of the requirements assigned to the test 
case is clearly supported by test results and post-
test analysis.  

Software Test 
Results 

Verification by 
Analysis Method 

N/A For requirements that are verified by analysis, the 
analysis steps and results are clearly documented. 
The rationale for asserting that the analysis shows 
the requirement(s) are verified is documented and 
well understood. 

Software Test 
Results 

As-Run 
Procedures 

N/A As-run procedures, including redlines, are 
controlled. This includes procedures executed 
initially, procedures executed for any retesting, and 
procedures executed for regression testing. 



 

35 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software Test 
Results 

Log and 
Summary 
Documentation 

N/A A chronological log of the actual test execution was 
maintained. A summary of the results of each test 
case was documented, including the version of the 
software under test, version of the test environment, 
test deviations or problems that occurred, and 
significant anomalies encountered. This 
documentation was prepared for all software 
qualification test sessions, including initial testing, 
any required retesting, and regression testing. 

Software Test 
Results 

Test Anomaly 
Investigation 

N/A For each test case, rationale explaining why test 
anomalies and their resolutions, including 
workarounds, have not compromised the integrity of 
the test case and the verification of its associated 
requirements is documented. 

Software Test 
Results 

Test Anomaly 
Resolution 

N/A For each test case, all anomalies have been 
documented on discrepancy reports and have been 
resolved. Discrepancies with cause unknown (e.g., 
unable to duplicate) or resolution of “use as is” have 
been fully investigated and residual risk has been 
evaluated; the risks have been communicated to the 
receiving organization. 

Software Test 
Results 

Deviations N/A All deviations from the test procedure have been 
documented, and residual risk has been evaluated. 

Software Test 
Results 

Deviations and 
Waivers 

N/A All deviations and waivers for unverified 
requirements have been approved. The deviations 
and waivers have been communicated to the 
receiving organization. 

Software Test 
Results 

IV&V N/A All actions have been resolved from any 
independent verification and validation activities. 

Software Version 
Description 

Software Product 
Installation 
Instructions 

N/A The installation instructions cover all types of 
installation files: COTS, configuration files, data 
files, databases, scripts, filters, and executables. 



 

36 

Product Area 
Early Lifecycle Criteria 

Software Architecture Readiness (SAR) 
Late Lifecycle Criteria 

Build Turnover Readiness (BTR) 

Software Version 
Description 

Site-Specified 
Installation 
Instructions 

N/A Installation instructions are clearly documented and 
validated for every receiving environment and site-
specific policies and procedures. Installation scripts 
for each environment and site are complete, current, 
baselined, stable, and released. 

Software Version 
Description 

Build Scripts N/A The values of the check sums, file sizes, or other 
method for verifying installation of the correct 
version of the software have been validated against 
the values produced by the as-built build scripts. 

Operational 
Databases 

Configuration 
Management 

Plans exist for configuration management of 
databases containing operational data at multiple 
sites, user equipment, and for multiple satellites 
(e.g., data at the factory, for ground development 
and operational facilities, and on orbit for one or 
more satellites). 

The initial operational database is baselined and 
released at the factory and ground development 
sites. 

Operational 
Databases 

Procedures N/A Procedures for updating the content of the 
operational databases and synchronizing the 
content across the satellite factory, user equipment, 
ground development and operational facilities, and 
one or more on-orbit satellites are complete, 
current, baselined, stable, and released. 

Operational 
Databases 

Compatibility 
Demonstration 
for Space Target 
Processor 

N/A The ability to update the content of the operational 
databases at the satellite factory and to upload the 
new contents to the target hardware has been 
demonstrated, including the correct operation of the 
software post-upload. 

Operational 
Databases 

Compatibility 
Demonstration 
for Ground 
Target Processor 

N/A The ability to update the content of the ground 
database at the ground development facility from 
the factory operation database and to send 
commands with the new values has been 
demonstrated. 

 



 

37 

Table 3. Assessment Criteria for the Process Perspective 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
development 
planning, 
monitoring, and 
controlling 

Software 
development 
planning  

A process exists for the development of software-
related program plans that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process requires 
the development and use of program plans that 
define software program activities (e.g., software 
development plan; software configuration 
management plan; software quality assurance plan; 
software measurement plan; software product 
evaluation plan). The plans are integrated across all 
teammates and disciplines and comply with 
contractual standards and organizational standards 
and practices. Plans are effective, followed, released, 
maintained, and updated to reflect changes that 
impact software (e.g., requirements; scope; 
constraints; budget; schedule). Deviations from the 
software planning process are identified and 
corrective actions applied and tracked to closure. 

The program’s process for software development 
planning continues to be followed, controlled, 
maintained, and updated to reflect changes that 
impact software. Plans continue to be followed, 
released, maintained, and updated to reflect changes 
that impact software (e.g., requirements; scope; 
constraints; budget; schedule). Deviations from the 
software planning process are identified and 
corrective actions applied and tracked to closure. 

Software 
development 
planning, 
monitoring, and 
controlling 

Software 
development 
monitoring and 
controlling  

A process exists for software development monitoring 
and controlling that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process requires that software 
program management status progress against the 
software-related program plans, then take appropriate 
corrective actions when the program’s software 
performance deviates significantly from the plans. 
Progress is statused per the software-related program 
plans. Deviations from plans are identified and 
corrective actions applied and tracked to closure. 

The program’s process for software development 
monitoring and controlling continues to be followed, 
controlled, maintained, and updated to reflect 
changes that impact software. Progress continues to 
be statused per the software-related program plans. 
Deviations from plans are identified and corrective 
actions applied and tracked to closure.  



 

38 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
development 
planning, 
monitoring, and 
controlling 

Software 
development 
process 
planning 

A process exists for the development of the program’s 
software processes that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process requires 
the development and use of program processes, 
procedures, standards, and practices. Periodic 
process assessments demonstrate adherence to 
defined program processes. The processes, 
procedures, standards, and practices are integrated 
across all teammates and disciplines. The processes, 
procedures, standards, and practices provide 
software personnel with adequate direction to perform 
their assigned tasks. The processes, procedures, 
standards, and practices are defined to the level of 
“how to” perform as well as “what to” perform. The 
applicable processes, procedures, standards, and 
practices are used in the development and test of the 
software. Processes, procedures, standards, and 
practices are updated and controlled to reflect 
changes that impact software. Processes, 
procedures, standards, and practices are improved by 
fixing defects in the processes, procedures, 
standards, and practices or by implementing process 
improvements. Lessons learned from this or other 
programs are incorporated into process improvement 
plans. 

The program’s process for software development 
process planning continues to be followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The applicable processes, 
procedures, standards, and practices were used in 
the development and test of the software. Periodic 
process assessments continue to demonstrate 
adherence to defined program processes, 
procedures, standards, and practices. Processes, 
procedures, standards, and practices are updated 
and controlled to reflect changes that impact 
software. Processes, procedures, standards, and 
practices are improved by fixing defects in the 
processes, procedures, standards, and practices or 
by implementing process improvements. Deviations 
from documented processes, procedures, standards, 
and practices are identified, approved, corrective 
actions applied and tracked to closure. 



 

39 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
development 
planning, 
monitoring, and 
controlling 

Software 
stakeholders 

A process exists for the development of a software 
stakeholder plan that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process requires the 
development and use of a software stakeholder plan 
that identifies relevant stakeholders and their 
involvement in the software program and is consistent 
with the overall program plan. Software stakeholder 
activities are integrated with the program plans. 
Software stakeholders may be internal or external to 
the program. The software stakeholder plan is 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. 

The program’s process for software stakeholder 
planning continues to be followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The software stakeholder plan 
continues to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. 



 

40 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
development 
planning, 
monitoring, and 
controlling 

Software builds A process exists for the development of a software 
master build plan that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process requires 
the development and use of a software master build 
plan that defines the sequence in which software 
components are integrated and tested, supports the 
system integration and test plan, and is consistent 
with the software requirements and architecture. The 
build plan identifies the resources required to develop 
and test each build (e.g., special test equipment). The 
build plan provides for early infrastructure builds and 
early non-developmental item (NDI) builds, as 
applicable. Currently defined software requirements 
are allocated to builds in the build plan. If a 
requirement is only partially implemented in a build, 
the build plan should clearly state the limitations of 
the build in meeting that requirement. Interfaces to 
the software, for example, commands, messages, 
and responses as defined in an ICD, have been 
allocated to builds. The build plan supports the end-
to-end execution of the software threads. The 
software master build plan is effective, followed, 
released, maintained, and updated to reflect changes 
that impact software.  

The program’s process for software build planning 
continues to be followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
software master build plan continues to be effective 
followed, released, maintained, and updated to reflect 
changes that impact software. The as-built software 
correctly reflects the build plan. Requirements 
allocation to builds has been tracked and deviations 
identified, approved and tracked to closure.  

Integrated 
development 
environment 

Software 
development 
environment 

A process exists for the development of the software 
development environment that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process results in 
a software development environment that supports 
the program’s processes and tools and is integrated 
across all teammates and disciplines. The software 
development environment is controlled and updated 
to reflect changes that impact software. 

The program’s process for the development of the 
software development environment continues to be 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The software 
development environment continues to be controlled 
and updated to reflect changes that impact software.  



 

41 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Integrated 
development 
environment 

Software 
integration and 
test 
environment 

A process exists for the development of the software 
integration and test environments (e.g., development 
workstation, software simulation of hardware, 
hardware-in-the-loop, and the target system) that is 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process results in software integration and test 
environments that support the program’s processes 
and tools and are integrated across all teammates 
and disciplines. The process handles resolution of 
competing needs for verification facility support. The 
software integration and test environments are 
controlled and updated to reflect changes that impact 
software. 

The program’s process for the development of the 
software integration and test environment continues 
to be followed, controlled, maintained, and updated to 
reflect changes that impact software. The software 
integration and test environments continue to be 
controlled and updated to reflect changes that impact 
software.  

Integrated 
development 
environment 

Software 
development 
library 

A process exists for the development of the software 
development library that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process results in 
a software development library that is integrated 
across all teammates and disciplines. The software 
development library is controlled and updated to 
reflect changes that impact software development. 

The program’s process for the development of the 
software development library continues to be 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The software 
development library continues to be controlled and 
updated to reflect changes that impact software.  

Integrated 
development 
environment 

Software 
development 
files 

A process exists for each teammate for the 
development of software development files (SDFs) 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. Any 
common SDF processes are integrated across 
teammates and disciplines. The SDFs are controlled 
and updated to reflect changes that impact software. 

The program’s process for the development of 
software development files continues to be followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The SDFs continue to 
be controlled and updated to reflect changes that 
impact software.  



 

42 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Integrated 
development 
environment 

Non-
developmental 
software 

A process exists for the development of a refresh plan 
for software non-developmental items (NDI) that is 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. NDI 
include COTS, GOTS, reuse and open source 
software. The process requires the development and 
use of a refresh plan that defines each NDI, how it 
has been configured and populated for the program’s 
software development environment, and identifies 
other products with which it interfaces. The COTS 
refresh plan includes the plan for COTS configuration 
management. The refresh plan is consistent with the 
program’s processes and tools, is integrated across 
all teammates and disciplines, and has criteria for 
determining when NDI must be upgraded to a new 
version. The COTS refresh plan is effective, followed, 
released, maintained, and updated to reflect changes 
that impact software. 

The program’s process for the development of a 
refresh plan continues to be followed, controlled, 
maintained, and updated to reflect changes that 
impact software. Software NDI have been correctly 
configured and populated for the program’s software 
development environment. NDI have been upgraded 
as planned. The refresh plan continues to be effective 
followed, released, maintained, and updated to reflect 
changes that impact software.  

Systems 
engineering 

System 
requirements 
development 

A process exists for the development of system 
requirements that is effective, followed, controlled, 
and maintained. The process requires that software 
engineers participate in the development and 
allocation of system requirements to ensure that the 
allocated requirements can be implemented by the 
software. 

Updates to the system requirements development 
process maintain the participation of software 
engineers. 

Systems 
engineering 

System 
operations 
concept 
development 

A process exists for the development of the system 
operations concept that is effective, followed, 
controlled, and maintained. The system operations 
concept development process requires participation 
from software engineers to ensure that the operations 
concept can be effectively implemented by the 
software. 

Updates to the system operations concept 
development process maintain the participation of 
software engineers. 



 

43 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Systems 
engineering 

System 
architecture 
development 

A process exists for the development of the system 
architecture that is effective, followed, controlled, and 
maintained. The process includes a formal decision 
analysis and resolution process that evaluates 
identified alternatives against established criteria. The 
process requires that software personnel are involved 
in the decisions of what functionality is implemented 
in hardware versus software, what functionality is 
allocated to space versus ground, the selection of the 
on-board and ground processors and other software-
sensitive hardware elements, such as redundancy, 
buffering and interfaces, and the allocation of 
functionality across space subsystems and ground 
elements.  

Updates to the system architecture development 
process maintain the participation of software 
engineers. 

Systems 
engineering 

Information 
assurance 

A process exists for the development and use of an 
information assurance plan that is effective, followed, 
controlled, and maintained. The process requires that 
software security experts participate in the 
development and allocation of information assurance 
requirements to ensure that the allocated 
requirements can be implemented by the software. 
The process requires that all stakeholders, especially 
any external accrediting agency, have been involved 
appropriately in software architecture development 
and review. The information assurance plan is 
effective, followed, released, maintained, and updated 
to reflect changes that impact software.  

Adherence to the information assurance plan is 
reflected in the as-built software. The information 
assurance plan continues to be effective, followed, 
released maintained, and updated to reflect changes 
that impact software. 



 

44 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Systems 
engineering 

Dependability  A process exists for the development and use of a 
system dependability plan that is effective, followed, 
controlled, and maintained. The process requires that 
software dependability experts participate in the 
development and allocation of dependability 
requirements to ensure that the allocated 
requirements can be implemented by the software. 
The plan requires that data be collected during 
integration and qualification testing to support the 
dependability analyses. The dependability plan is 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. 

Adherence to the dependability plan is reflected in the 
as-built software. The dependability plan continues to 
be effective, followed, released, maintained, and 
updated to reflect changes that impact software. 

Systems 
engineering 

Human systems 
integration 

A process exists for the development and use of a 
human systems integration (HSI) plan that is 
effective, followed, controlled, and maintained. The 
process requires that software HSI experts participate 
in the development and allocation of HSI 
requirements to ensure that the allocated 
requirements can be implemented by the software. 
The HSI plan is effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. 

Adherence to the HSI plan is reflected in the as-built 
software. The HSI plan continues to be effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. 

Systems 
engineering 

Criticality 
analysis 

A process exists for system criticality analysis that is 
effective, followed, controlled, and maintained. The 
process requires the development and use of a 
system criticality analysis report that identifies critical 
system requirements. The process requires that 
software criticality analysis experts participate in the 
development of the system criticality analysis report. 
The system criticality analysis report is effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. Critical system 
requirements have been flowed to software.  

The system criticality analysis is reflected in the as-
built software. The criticality analysis process 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. Updates to the program’s system 
criticality analysis process maintain the participation 
of software criticality analysis experts. The system 
criticality analysis report continues to be effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. Critical requirements 
have been especially well tested. 



 

45 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Systems 
engineering 

System safety A process exists for system safety analysis that is 
effective, followed, controlled, and maintained. The 
process requires the development and use of a 
system safety plan. The process requires that 
software safety experts participate in the development 
and allocation of system safety requirements to 
ensure that the allocated requirements can be 
implemented by the software and participate in 
system safety analyses to ensure that the analyses 
appropriately include software. The system safety 
plan is effective, followed, released, maintained, and 
updated to reflect changes that impact software. 

The system safety analysis process continues to be 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. 
Adherence to the system safety plan is reflected in 
the as-built software. The system safety plan 
continues to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. 

Software 
engineering 

Non-
developmental 
software 

A process exists for the identification, evaluation, and 
selection of NDI that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process includes defining 
criteria for the identification, evaluation, and selection 
of NDI and analysis to determine if the selected NDI 
meets all evaluation criteria and allocated 
requirements and provides a low risk solution. NDI 
needed for early builds are identified and selection 
rationale provided. The process requires the 
development and use of a refresh plan that defines 
each NDI, how it has been configured and populated 
for the operational environment, and identifies other 
products with which it interfaces. The refresh plan is 
consistent with the program’s processes and tools, is 
integrated across all teammates and disciplines, and 
has criteria for determining when NDI must be 
upgraded to a new version. The refresh plan is 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. 

The NDI process continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. NDI have been 
adequately tested and demonstrated to meet 
allocated requirements and program needs. NDI have 
been upgraded as planned. The refresh plan 
continues to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software.  



 

46 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
engineering 

Specialty 
engineering 

A process exists for specialty engineering analysis 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process includes software criticality analysis, 
dependability, HSI, information assurance and safety. 
The process includes deriving appropriate software 
specialty engineering requirements, performing 
performance analyses to ensure that software 
specialty engineering requirements can be met by the 
software architecture and design, and performing 
specialty engineering testing. The analyses have 
been updated to reflect changes that impact software. 

The software specialty engineering analysis process 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The analyses have been updated to 
reflect changes that impact software. Software 
specialty engineering analyses and testing have been 
performed to demonstrate that software specialty 
engineering requirements have been met for this 
build. The analyses have been updated to reflect 
changes that impact software. 

Software 
engineering 

Specialty 
engineering 
standards and 
practices 

A process exists to define the program’s software 
specialty engineering standards and practices that is 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
specialty engineering standards and practices include 
government, commercial, and international standards 
as appropriate for the program’s contract, scope, and 
constraints. Program personnel follow the standards 
and practices while performing the software specialty 
engineering activities. The specialty engineering 
standards and practices are effective, followed, 
released, maintained, and updated to reflect changes 
that impact software.  

The specialty engineering standards and practices 
continue to be effective, followed, baselined, 
maintained, and updated to reflect changes that 
impact software. Adherence to the specialty 
engineering standards and practices is reflected in 
the as-built software. The specialty engineering 
analyses have been updated to reflect changes that 
impact software. 



 

47 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
requirements 

Software 
requirements 
development 

A process exists for software requirements 
development that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process requires a formal 
decision analysis and resolution process that 
evaluates identified alternatives against established 
criteria. Requirements allocation decisions are 
documented. The process ensures that software 
requirements have been elaborated to address 
software functional, performance, non-functional, HSI, 
behavioral, data integrity, information assurance, 
safety, dependability, and maintenance requirements, 
and software standards and practices. The process 
provides for requirements to be updated to reflect 
changes that impact software. The process requires a 
product evaluation to be performed on software 
requirements and any significant changes to the 
software requirements.  

The program’s software requirements development 
process continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. 

Software 
requirements 

Software 
requirements 
development 
standards and 
practices 

A process exists for the development of the program’s 
software requirements development standards and 
practices that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The software requirements 
development standards and practices are effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. The requirements 
development standards and practices include 
government, commercial, and international standards 
as appropriate for the program’s contract, scope, and 
constraints. The standards and practices include 
elicitation and validation of requirements from 
requirements stakeholders. Program personnel follow 
the standards and practices while performing the 
software design activities. 

Adherence to the software requirements development 
standards and practices is reflected in the as-built 
software. The program’s software requirements 
development standards and practices continue to be 
effective, followed, released, maintained, and updated 
to reflect changes that impact software.  



 

48 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
requirements 

Software 
requirements 
management 

A process exists for software requirements 
management that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process requires bi-directional 
traceability between software requirements and 
parent requirements, and between software 
requirements and the software architecture. The 
process requires identification of software test 
methods for each requirement. The process requires 
software requirements allocation to builds. The 
process provides for requirements to be updated to 
reflect changes that impact software, including their 
traceability and verification method. The process 
requires software requirements traceability to be 
independently reviewed.  

Adherence to the software requirements management 
process is reflected in the as-built software. The 
program’s software requirements management 
process continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. 

Software 
requirements 

Software 
requirements 
management 
standards and 
practices 

A process exists to define the program’s software 
requirements management standards and practices 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
software requirements management standards and 
practices are effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. The requirements management 
standards and practices include government, 
commercial, and international standards as 
appropriate for the program’s contract, scope, and 
constraints. The standards and practices include 
developing and maintaining bi-directional traceability 
between software requirements and their parent and 
between software requirements and the software 
architecture. Program personnel follow the standards 
and practices while performing the software 
architecture activities.  

Adherence to the software requirements management 
standards and practices is reflected in the as-built 
software. The program’s software requirements 
management standards and practices continue to be 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. 



 

49 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
architecture 

Software 
architectural 
design 

A process exists for the development of the software 
architecture process that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process includes a 
formal decision analysis and resolution process that 
evaluates identified alternatives against established 
criteria. The process requires the software 
architecture to support the system design, system 
operations concept, and quality attributes, and the 
architecture decisions to be documented. The 
process provides for the software architecture to be 
updated to reflect changes that impact software. The 
process requires a product evaluation to be 
performed on the software architecture and any 
significant changes to the software architecture.  

Adherence to the software architecture is reflected in 
the as-built software. The software architecture has 
been updated to reflect changes that impact software. 
The software architecture process continues to be 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. 

Software 
architecture 

Software 
architecture 
standards and 
practices 

A process exists to define the program’s software 
architecture standards and practices that is effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The software 
architecture standards and practices are effective, 
followed, baselined, maintained, and updated to 
reflect changes that impact software. The architecture 
standards and practices include government, 
commercial, and international standards as 
appropriate for the program’s contract, scope, and 
constraints. The standards and practices include 
establishment of architecture principles.  

Adherence to the software architecture standards and 
practices is reflected in the as-built software. The 
program’s software architecture standards and 
practices continue to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. 



 

50 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software design Software 
detailed design 

A process exists for software detailed design that is 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process includes a formal decision analysis and 
resolution process that evaluates identified 
alternatives against established criteria. The process 
requires that the software design is consistent with 
the software architecture and that design decisions 
are documented. The process provides for software 
design to be updated to reflect changes that impact 
software. The process requires a product evaluation 
to be performed on the software design.  

Adherence to the software detailed design is reflected 
in the as-built software. The software design has 
been updated to reflect changes that impact software. 
The software design process continues to be 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. 

Software design Software 
detailed design 
standards and 
practices 

A process exists for the development of the program’s 
software design standards and practices that is 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
software design standards and practices are effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. The design standards 
and practices include government, commercial, and 
international standards as appropriate for the 
program’s contract, scope, and constraints. The 
standards and practices include establishment of 
design patterns for common components and 
services.  

Adherence to the software detailed design standards 
and practices is reflected in the as-built software. The 
software detailed design standards and practices 
continue to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. 

Software 
implementation  

Software coding  A process exists for software coding that is effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The process is 
consistent with all required specifications, standards, 
and constraints. The process requires a product 
evaluation to be performed on the code. The process 
addresses updating code due to changes that impact 
software.  

The code has been updated to reflect changes that 
impact software. The software coding process 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. 



 

51 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
implementation 

Software coding 
standards and 
practices 

A process exists for the development of the program’s 
coding standards and practices that is effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The standards 
and practices are effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. The standards and practices include 
government, commercial, and international standards 
as appropriate for the program’s contract, scope, and 
constraints. The coding standards and practices are 
compatible with the software specialty engineering 
standards and practices.  

Adherence to the coding standards and practices is 
reflected in the as-built software. The coding 
standards and practices continue to be effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. 

Software 
implementation 

Software code 
analysis 

A process exists for code analysis that is effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The processes 
includes automated structure analysis, static analysis, 
dynamic analysis, complexity analysis, and analysis 
for memory leaks, vulnerabilities, type mismatches, 
and dead code. The process for code analysis 
enforces the coding standards and practices. The 
process includes criteria for determining when a 
specific analysis is appropriate. 

Code analyses have been performed to demonstrate 
that software requirements have been met for this 
build. The analyses have been updated to reflect 
changes that impact software. The program’s code 
analysis process continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. 

Software 
implementation 

Software unit 
testing 

A process exists for unit testing that is effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The process 
includes the preparation of test cases, test 
procedures, test conduct, and test reports. The 
process addresses initial test, re-test, and regression 
test. The process requires a product evaluation to be 
performed on the software unit test cases. The 
process addresses updating unit test cases and 
procedures due to changes that impact software.  

Test cases and procedures have been updated to 
reflect changes that impact software. The program’s 
software unit test process continues to be effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. 



 

52 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
implementation 

Software unit 
testing 
standards and 
practices 

A process exists for the development of the program’s 
software unit test standards and practices that is 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
standards and practices are effective, followed, 
released, maintained, and updated to reflect changes 
that impact software. The standards and practices 
include government, commercial, and international 
standards as appropriate for the program’s contract, 
scope, and constraints. The standards and practices 
address unit test coverage requirements. The 
standards and practices establish unit test 
requirements for nominal and off-nominal test cases. 
The standards and practices are compatible with the 
software specialty engineering standards and 
practices.  

The program’s software unit testing standards and 
practices continue to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. 

Software unit 
integration and 
testing 

Software 
executables 

A process exists for building the executable software 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process includes all activities necessary to prepare 
executables from configuration managed code for all 
integration test platforms, including the target 
platform. The process addresses updating software 
executables due to changes that impact software.  

The program’s process for building executable 
software continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. 

Software unit 
integration and 
testing 

Software unit 
integration 
testing 

A process exists for software unit integration testing 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process includes the preparation of test plans, test 
cases, test procedures, test conduct, and test reports. 
The process addresses initial test, retest, and 
regression test. The process addresses updating 
integration test cases and procedures due to changes 
that impact software.  

The program’s process for software unit integration 
testing continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. 



 

53 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software unit 
integration and 
testing 

Software unit 
integration 
testing 
standards and 
practices 

A process exists for development of the program’s 
software unit integration testing standards and 
practices that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The standards and practices are 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. The 
standards and practices include government, 
commercial, and international standards as 
appropriate for the program’s contract, scope, and 
constraints. The standards and practices address 
software internal interface coverage and boundary 
conditions. The standards and practices establish unit 
integration testing requirements for nominal and off-
nominal test cases. The standards and practices are 
compatible with the software specialty engineering 
standards and practices.  

The program’s software unit integration testing 
standards and practices continue to be effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. 



 

54 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
qualification 
testing 

Software 
qualification 
testing 

A process exists for software qualification testing that 
is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process includes the preparation of test plans, test 
cases, test procedures, test conduct, and test reports. 
The process addresses initial test, retest and 
regression test. The process includes incorporating 
test like you fly, day-in-the-life, duration, and other 
operational tests, as appropriate. The process 
requires that qualification test is performed by 
personnel independent of the software developers. 
The process addresses the involvement of external 
stakeholders, such as customers, quality assurance, 
and readiness assessors. The process requires 
updating qualification test cases and procedures due 
to changes that impact software and re-running the 
qualification tests. These changes include software 
changes, environment changes, and operational 
concept changes.  

The program’s process for software qualification 
testing continues to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. 

Software 
qualification 
testing 

Software 
qualification 
testing 
standards and 
practices 

A process exists for development of the program’s 
software qualification testing standards and practices 
that is effective, followed, maintained, and updated to 
reflect changes that impact software. The standards 
and practices are effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. The standards and practices include 
government, commercial, and international standards 
as appropriate for the program’s contract, scope, and 
constraints. The standards and practices require a 
product evaluation to be performed on software 
qualification test plans. The standards and practices 
require a test readiness review prior to software 
qualification test. The standards and practices require 
software quality assurance participation in software 
qualification testing.  

The program’s software qualification testing 
standards and practices continue to be effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. 



 

55 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
qualification 
testing 

Software 
uploads 

A process exists to create, test, qualify, and upload 
flight software on the operational vehicle that is 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process requires that the software be re-qualified 
before upload. The process addresses roll-back 
requirements, if applicable. The upload and rollback 
products and procedures, if any, must be qualified.  

The program’s process for software uploads 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. 

Software/ 
hardware 
integration and 
testing 

Software/ 
hardware 
integration and 
testing 

A process exists for software/hardware integration 
and testing that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process includes the 
preparation of test plans, test cases, test procedures, 
test conduct, and test reports. The process address 
initial test, retest and regression test. The process 
includes incorporating test like you fly, day-in-the-life, 
duration, and other operational tests, as appropriate. 
The process includes performance tuning. The 
process addresses updating test cases and 
procedures due to changes that impact software. 

The process for software/hardware integration and 
testing continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. 



 

56 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software/ 
hardware 
integration and 
testing 

Software/ 
hardware 
integration and 
testing 
standards and 
practices 

A process exists for development of the program’s 
software/hardware integration and testing standards 
and practices that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The standards and practices are 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. The 
standards and practices include government, 
commercial, and international standards as 
appropriate for the program’s contract, scope, and 
constraints. The standards and practices require a 
product evaluation to be performed on 
software/hardware integration and test plans. The 
standards and practices require a test readiness 
review prior to software/hardware integration and test. 
The standards and practices require software quality 
assurance participation in software/hardware 
integration and testing.  

The program’s software/hardware integration and 
testing standards and practices continue to be 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. 



 

57 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
transition to 
operations 

Planning 
software 
transition to 
operations  

A process exists for planning the software transition 
to operations that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process requires the 
development of a software transition to operations 
plan that is consistent with the overall program plan. 
The initial concept for transition to operations is 
defined (e.g., software will be operated by the 
government, by the development contractor, or by a 
third party). The plan includes an evaluation of data 
rights to ensure that the operational site has access 
to all required code and documentation. The plan 
identifies all software products necessary for 
operations, including the preparation of the 
executable software, version descriptions for user 
sites, user manuals, and computer operations 
manuals. The plan for transition identifies the 
operational sites and addresses operator training, 
deployment, and activation strategy, including staged 
operations and roll-back. The software transition to 
operations plan is updated and released to reflect 
changes that impact software. 

The program’s software transition to operations plan 
continues to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. If this build will transition to 
operations, the plan is complete and transitioning to 
operations according to the plan is low risk. 



 

58 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
transition to 
maintenance 

Planning 
software 
transition to 
maintenance  

A process exists for planning the software transition 
to maintenance that that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process requires 
the development of a software transition to 
maintenance plan that is consistent with the overall 
program plan. The initial concept for transition to 
maintenance is defined (e.g., software will be 
maintained by the government, by the development 
contractor, or by a third party). The plan includes an 
evaluation of data rights to ensure that the 
maintenance site has access to all required code and 
documentation. The plan identifies all software 
products necessary for maintenance, including 
executable software, source files, version descriptions 
for the maintenance site, the “as-built” software 
design and related materials, updated 
system/subsystem design description, updated 
software requirements, updated system requirements, 
maintenance manuals, computer programming 
manuals, firmware support manuals. The plan 
addresses the acquisition or transition of the 
integrated development environment and the software 
integration and test environments to the maintenance 
environment, and training in their use. The plan is 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. 

The program’s software transition to maintenance 
plan continues to be effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. If this build will transition to 
maintenance, the plan is complete and transitioning to 
maintenance according to the plan is low risk. 



 

59 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
configuration 
management 

Software 
configuration 
management 
process 

A process exists for each teammate for software 
configuration management planning that is effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The process 
requires the development of a software configuration 
management plan. The process requires 
configuration identification, configuration control, 
configuration status accounting, and configuration 
audit. The software configuration management plan is 
effective, followed, released, maintained, and updated 
to reflect changes that impact software. 

The program’s software configuration management 
process continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The program’s 
software configuration management plan continues to 
be effective, followed, released, maintained, and 
updated to reflect changes that impact software. 

Software 
configuration 
management 

Software 
configuration 
management 
standards and 
practices 

A process exists for development of the program’s 
configuration management standards and practices 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
standards and practices are effective, followed, 
released, maintained, and updated to reflect changes 
that impact software. The standards and practices 
include government, commercial, and international 
standards as appropriate for the program’s contract, 
scope, and constraints. The standards and practices 
address software configuration identification, software 
configuration control, software status accounting, and 
software configuration audits. The standards and 
practices require that a product evaluation be 
performed on the software configuration management 
plan. The standards and practices require software 
quality assurance participation in software 
configuration management.  

The program’s software configuration management 
standards and practices continue to be effective, 
followed, released, maintained, and updated to reflect 
changes that impact software. 



 

60 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
configuration 
management 

Software 
configuration 
identification 

A process exists for each teammate for the 
identification of software configuration items that is 
effective, followed, controlled, maintained, and 
updated for changes that impact software. The 
process requires the development of a configuration 
item list with unique identifiers. The list includes 
developed items, non-developmental items, and items 
delivered from suppliers integrated within other items. 
The process supports multiple concurrent baselines. 
The process ensures that all products used in test, 
launch, maintenance, and operations are identified. 
The configuration item list is updated for changes that 
impact software. 

The program’s software configuration identification 
process continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The software 
configuration item list is updated to reflect changes 
that impact software. The as-built software has been 
baselined. 

Software 
configuration 
management 

Software 
configuration 
control 

A process exists for each teammate for configuration 
control of software that is effective, followed, 
controlled, and maintained, and updated for changes 
that impact software. The process provides build 
procedures, baseline control, access control, and 
data integrity. The process applies to requirements, 
design, code, documentation, COTS products, and 
databases. The process provides for roll-back to a 
known configuration. The process provides for patch 
management. The process describes how to build 
executables from code. 

The program’s software configuration control process 
continues to be effective, followed, controlled, 
maintained, and updated for changes that impact 
software. All required items associated with the as-
built software, including test environments, test 
drivers and scripts, and test data, are under 
configuration control. 

Software 
configuration 
management 

Software 
configuration 
status 
accounting 

A process exists for each teammate for software 
configuration status accounting that is effective, 
followed, controlled, and maintained, and updated to 
reflect changes that impact software. The process 
provides for efficient and timely performance of status 
accounting. 

The program’s software configuration status 
accounting process continues to be effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. Configuration 
status accounting has been regularly performed and 
is current in accordance with the plan.  



 

61 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
configuration 
management 

Software 
configuration 
audits 

A process exists for each teammate for software 
configuration audits that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process provides 
for efficient and timely performance of configuration 
audits.  

The program’s software configuration audit process 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. A software configuration audit has 
been performed prior to BTR per the configuration 
management plan.  

Software 
assessments 

Software 
product 
evaluations 

A process exists for each teammate for software 
product evaluations that is effective, followed, 
controlled, and maintained, and updated to reflect 
changes that impact software. The process may 
define different types of software product evaluations 
with different levels of formality (e.g., peer reviews, 
inspections, walkthroughs). The process specifies 
that reviews performed are appropriate for the 
product and the criticality of the product. The process 
requires that every software product is evaluated by 
knowledgeable reviewers and relevant stakeholders, 
other than the author of the product, against 
established criteria. For more formal reviews, the 
process requires that a) action items from software 
product evaluations are documented and tracked to 
closure, and b) defects from software product 
evaluations are documented, categorized by type and 
severity, and tracked to closure. For less formal 
reviews, minutes capture the product reviewed, 
attendees and major decisions made. 

The program’s software product evaluation process 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The evaluations performed are 
appropriate for the product and the criticality of the 
product.  



 

62 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software quality 
assurance 

Software quality 
assurance 
process 

A process exists for each teammate for software 
quality assurance that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process requires 
the development of a quality assurance plan. The 
process provides for quality assurance participation in 
software activities. The process provides for efficient 
and timely performance of quality assurance audits of 
software products and processes against 
organizational and contractual standards and 
procedures. The process requires that the software 
quality organization have a reporting chain 
independent from program management. The 
process defines how quality assurance non-
compliance issues are handled. The software quality 
assurance plan is effective, followed, released, 
maintained, and updated to reflect changes that 
impact software. 

The program’s software quality assurance process 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The program’s software quality 
assurance plan continues to be effective, followed, 
released, maintained, and updated to reflect changes 
that impact software. Software quality assurance 
audits have been performed as planned.  

Software quality 
assurance 

Software quality 
assurance 
standards and 
practices 

A process exists for development of the program’s 
software quality assurance standards and practices 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
standards and practices are effective, followed, 
released, maintained, and updated to reflect changes 
that impact software. The standards and practices 
include government, commercial, and international 
standards as appropriate for the program’s contract, 
scope, and constraints. The standards and practices 
require that a product evaluation be performed on the 
software quality assurance plan. The standards and 
practices define the participation of software quality 
assurance in the software development activities.  

The program’s software quality assurance standards 
and practices continue to be effective, followed, 
released, maintained, and updated to reflect changes 
that impact software. 



 

63 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Corrective 
action 

Problem 
resolution and 
change 
management 

A process exists for each teammate for corrective 
action that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process includes both change 
requests and problem reports. The process describes 
the corrective action system, and defines the causal 
analysis (e.g., root cause analysis), and resolution 
process, including any change control and or 
corrective action boards. The process requires that all 
problems and changes are documented and 
corrective actions are implemented and tracked to 
closure. The risks have been assessed, documented, 
communicated and an acceptable risk handling 
strategy is in place.  

The program’s software problem resolution and 
change management process continues to be 
effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. 
Actions from previous reviews are reviewed and 
closed as appropriate. The risks have been assessed, 
documented, communicated and an acceptable risk 
handling strategy is in place. If significant numbers of 
discrepancies were discovered late in the 
development, causal analysis was done to identify 
and remove additional problems which testing may 
not yet have uncovered. 

Process 
improvement 

Software 
process 
assessment 

A process exists for performing periodic software 
process assessments that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process applies to 
all teammates and disciplines in accordance with 
contract requirements and organizational policies. 
The process addresses process deviations and 
changes due to organizational process updates. 
Previous process assessments have demonstrated 
adherence to defined program process. Gaps and 
shortcomings have been addressed and corrective 
actions are being worked. Process deviations, 
improvements, and changes since last technical 
review are documented. The risks have been 
assessed, documented, communicated and an 
acceptable risk handling strategy is in place.  

The program’s software process assessment process 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. Previous process assessments have 
demonstrated adherence to defined program process. 
Gaps and shortcomings have been addressed and 
corrective actions are being worked. Process 
deviations, improvements, and changes since last 
technical review are presented. The risks have been 
assessed, documented, communicated and an 
acceptable risk handling strategy is in place. 



 

64 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Process 
improvement 

Software 
process 
monitoring and 
control 

A process exists for performing periodic analyses of 
process execution metrics that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process includes 
technical, cost, schedule and quality metrics to 
identify changes to process that would improve 
execution performance.  

The program’s software process monitoring and 
control process continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. 

Joint technical 
and 
management 
reviews 

Joint technical 
reviews 

A process exists for performing joint technical reviews 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process is consistent with contract requirements and 
organizational policies. The process requires that 
action items from previous reviews are reviewed prior 
to SAR, each action item has a closure plan, and that 
the closure plan is on track. The process requires that 
relevant stakeholders participate in the activities 
associated with this review. The process requires that 
mandatory reviewers be identified and participate in 
the review. The process requires that a review cannot 
be closed without the mandatory reviewer input. The 
process requires that minutes and action items be 
captured. The process requires that risks are 
assessed, documented, communicated and an 
acceptable risk handling strategy is in place.  

The program’s process for joint technical reviews 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. Action items from previous reviews 
are reviewed prior to BTR, each action item has a 
closure plan, and the closure plan is on track. The 
risks have been assessed, documented, 
communicated, and an acceptable risk handling 
strategy is in place.  



 

65 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Joint technical 
and 
management 
reviews 

Joint 
management 
reviews 

A process exists for performing joint management 
reviews that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process is consistent with 
contract requirements and organizational policies. 
The process requires that action Items from previous 
reviews are reviewed prior to SAR, each action item 
has a closure plan, and that the closure plan is on 
track. The process requires that relevant stakeholders 
participate in the joint management reviews. The 
process requires that minutes and action items be 
captured. The process requires that risks are 
assessed, documented, communicated and an 
acceptable risk handling strategy is in place.  

The program’s process for joint management reviews 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. Action items from previous reviews 
are reviewed prior to BTR, each action item has a 
closure plan, and the closure plan is on track. The 
risks have been assessed, documented, 
communicated and an acceptable risk handling 
strategy is in place.  

Risk 
management  

Software risk 
management 

A process exists for performing software risk 
management that is effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The process is consistent with 
contract requirements and organizational policies. 
The process includes risk identification, risk 
assessment, risk handling, and risk monitoring and 
reporting. The process produces a list of software 
risks. A complete software risk list is identified and 
appropriate mitigation actions are being taken.  

The program’s process for software risk management 
continues to be effective, followed, controlled, 
maintained, and updated to reflect changes that 
impact software. The risk list and risk mitigation 
actions have been updated to reflect the as-built 
software. The risks have been assessed, 
documented, communicated and an acceptable risk 
handling strategy is in place.  

Management 
indicators 

Software 
metrics 

A process exists for planning, collecting, analyzing, 
and reporting software metrics that is effective, 
followed, controlled, maintained, and updated to 
reflect changes that impact software. The process is 
consistent with contract requirements and 
organizational policies. The process provides that 
deviations from plans are identified and corrective 
actions are applied and tracked to closure. Metrics 
reports have been prepared and analyzed and 
corrective actions have been initiated. 

The program’s process for software metrics continues 
to be effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. 
Metrics reports have been prepared and analyzed 
and corrective actions have been initiated.  



 

66 

Process Area 
Early Life Cycle Criteria 

Software Architecture Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Supplier 
management 

Software 
supplier 
management 

A process exists for identifying, evaluating, and 
selecting qualified suppliers of products and services 
that is effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. The 
process is consistent with contract requirements and 
organizational policies, and flows all appropriate 
contract requirements to the suppliers. The process 
covers both developers of new products or services 
and vendors of COTS products or services. The 
process requires the use of defined criteria in the 
evaluation and selection process. The process 
addresses the maintenance of developed and COTS 
products. The process addresses the acquisition of 
the appropriate data rights. The process addresses 
the long-term viability of suppliers and mitigation 
plans if the supplier is no longer able to supply the 
product or service. Plans and criteria for supplier 
selections not yet made are provided.  

The program’s process for software supplier 
management continues to be effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. Plans and criteria for 
supplier selections not yet made are provided. The 
criteria defined and evaluation activities performed to 
date are appropriate for the product and the criticality 
of the product.  

Training Training 
software 
personnel 

A process exists for identifying the training needs of 
software personnel that is effective, followed, 
controlled, maintained, and updated to reflect 
changes that impact software. The process ensures 
that all personnel get the required training or on-the-
job instruction. The process requires that the program 
maintain training records. The process addresses 
both organizational and program training, including 
process, methods, and tools. The training process 
addresses both the maintenance and increase of the 
proficiency of the personnel. Training plans are 
updated and released to reflect changes that impact 
software. Training records show that training is 
accomplished as planned. 

The program’s process for software training continues 
to be effective, followed, controlled, maintained, and 
updated to reflect changes that impact software. 
Training plans are updated and released to reflect 
changes that impact software. Training records show 
that training is accomplished as planned. 

 



 

67 

Table 4. Assessment Criteria for the Resource Perspective 

Resource Area 
Early Life Cycle Criteria 

Software Requirements Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Cost and 
Schedule 
Budgets 

Execution Software program is on budget and schedule at SAR 
or mitigation plan is in place. Sufficient resources 
exist to complete per schedule including anticipated 
ECPs. Sufficient budget and schedule time exists for 
active stakeholder involvement. Plan forward has 
sufficient budget and schedule for execution 
including risk reserve. 

Software program is on budget and schedule at BTR 
or mitigation plan is in place. Sufficient resources 
exist to support subsequent activities, including 
further integration, maintenance, and operations as 
applicable.  

Cost and 
Schedule 
Budgets 

Training Budget and schedule are in place to execute training 
plan to achieve and maintain proficiency of assigned 
personnel. 

Budget and schedule are in place to execute 
remaining training required by the training plan to 
achieve and maintain proficiency of assigned 
personnel. 

Personnel Clearances Sufficient security clearance billets exist for both staff 
and stakeholders. Program has sufficient pool of staff 
with appropriate security clearances. 

Sufficient security clearance billets exist for both staff 
and stakeholders. Program has sufficient pool of staff 
with appropriate security clearances. 

Personnel External Support to 
Software 

Adequate system engineering personnel and other 
SMEs are funded and available to support entire 
software life cycle.  

Adequate system engineering personnel and other 
SMEs are funded and available to support remaining 
software life cycle.  

Personnel Organizational 
structure 

Software organizational structure is defined and 
enables effective functioning as a team, including 
across corporate boundaries, if applicable.  

Software organizational structure is defined and 
enables effective functioning as a team, including 
across corporate boundaries, if applicable. Software 
organizational structure is sufficient for supporting 
the remaining work scheduled. 

Personnel Roles and 
Responsibilities 

Organizational roles and responsibilities related to 
software development have been identified, 
communicated, assigned, understood, and are being 
performed.  

Organizational roles and responsibilities related to 
software development have been identified, 
communicated, communicated, assigned, 
understood, and are being performed. Roles and 
responsibilities are sufficient for supporting the 
remaining work scheduled. 

Personnel Skills Staff is knowledgeable and proficient in the 
methodology, development environment, NDI, tools, 
and processes.  

Staff is knowledgeable and proficient in the 
development environment, NDI, tools and processes. 



 

68 

Resource Area 
Early Life Cycle Criteria 

Software Requirements Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Personnel Staffing level Adequate software staff is available to support 
concurrent development and test phases, including 
multiple concurrent builds if applicable. Software 
development and test personnel are available for 
timely root cause analysis and debugging of issues 
discovered during testing.  

Adequate software staff continues to be available to 
support concurrent development and test phases, 
including multiple concurrent builds if applicable, and 
post-development software maintenance. Software 
development and test personnel are available for 
timely root cause analysis and debugging of issues 
discovered during testing and operations, if 
applicable.  

Personnel Staffing Profile Sufficient budget is in place for adequate staff, 
addressing all defined roles (e.g., management, SW 
Architect, design, code, test, integration, 
configuration management). Staffing profile is 
realistic.  

Sufficient budget in place for adequate staff, 
addressing all defined roles (e.g., management, SW 
Architect, design, code, test, integration, 
configuration management). Staffing profile is 
realistic.  

Personnel Staffing Stability Turnover of software personnel is sufficiently low that 
forward progress is not impeded. 

Turnover of software personnel is sufficiently low that 
forward progress is not impeded. 

Personnel Stakeholders Program has engaged stakeholders early in 
development of the software requirements and 
architecture. Stakeholder participation is consistent 
with stakeholder plan. 

Stakeholder participation continues to be consistent 
with stakeholder plan. 

Integrated 
Development 
Environment 

Architecture & 
Design Tools 

Software architecture and design tools are identified 
(e.g., UML, Simulink, MATLAB), and sufficient 
licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tools are effective for program 
development needs.  

Tools are effective for program development needs. 
Sufficient licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tool obsolescence has been addressed. 

Integrated 
Development 
Environment 

Collaboration Tools Collaboration tools are identified (e.g., Portals, 
technical data, eROOM), and sufficient licenses have 
been purchased including maintenance extensions. 
Technical support is available. Tools are effective for 
program development needs.  

Tools are effective for program development needs. 
Sufficient licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tool obsolescence has been addressed. 



 

69 

Resource Area 
Early Life Cycle Criteria 

Software Requirements Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Integrated 
Development 
Environment 

Configuration 
Management/ Data 
Management Tools 

Change management and change control tools are 
identified (e.g., change management, defect tracking, 
version control), and sufficient licenses have been 
purchased including maintenance extensions. 
Technical support is available. Tools are effective for 
program development needs.  

Tools are effective for program development needs. 
Sufficient licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tool obsolescence has been addressed. 

Integrated 
Development 
Environment 

Debug Tools Software debug tools are identified (e.g., debugging 
and tuning, trace, step, breakpoint, profiling), and 
sufficient licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tools are effective for program 
development needs.  

Tools are effective for program development needs. 
Sufficient licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tool obsolescence has been addressed. 

Integrated 
Development 
Environment 

Development 
Infrastructure 

Sufficient workstations, including spares and 
consumables, are available to support project plans 
in all development areas. Networks meet project 
throughput requirements. Security gateways meet 
security requirements and have sufficient 
performance to meet project requirements.  

Sufficient workstations, including spares and 
consumables, are available to support project plans 
in all development areas. Networks meet project 
throughput requirements. Security gateways meet 
security requirements and have sufficient 
performance to meet project requirements.  

Integrated 
Development 
Environment 

Facility Physical development facilities meet security 
requirements and are adequate to support all 
concurrent activities.  

Physical development facilities meet security 
requirements and are adequate to support all 
concurrent activities.  

Integrated 
Development 
Environment 

Implementation & 
Build Tools 

Implementation and build tools are identified (e.g., 
compilers, linkers, build scripts), and sufficient 
licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tools are effective for program 
development needs.  

Tools are effective for program development needs. 
Sufficient licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tool obsolescence has been addressed. 

Integrated 
Development 
Environment 

Code analysis 
Tools 

Code analysis tools are identified (see process 
spreadsheet), and sufficient licenses have been 
purchased including maintenance extensions. 
Technical support is available. Tools are effective for 
program development needs.  

Tools are effective for program development needs. 
Sufficient licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tool obsolescence has been addressed. 



 

70 

Resource Area 
Early Life Cycle Criteria 

Software Requirements Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Integrated 
Development 
Environment 

Software 
Management Tools 

Software Management Tools are identified (e.g., 
scheduling, metrics), and sufficient licenses are 
purchased including maintenance extensions. 
Technical support is available. Tools are effective for 
software management needs.  

Tools are effective for program management needs. 
Sufficient licenses are purchased including 
maintenance extensions. Technical support is 
available. Tool obsolescence has been addressed. 

Integrated 
Development 
Environment 

Synchronization Tools selected are compatible across all necessary 
stakeholders, teams, and subcontractors. Tools 
across the program are compatible. 

Tools selected are compatible across all necessary 
stakeholders, teams, and subcontractors. Tools 
across the program are compatible. 

Integrated 
Development 
Environment 

System 
Engineering Tools 

System Engineering tools have been identified (e.g., 
requirement management, analysis,…), and 
sufficient licenses have been purchased including 
maintenance extensions. Technical support is 
available. Tools are effective for system engineering 
needs.  

Tools are effective for program system engineering 
needs. Sufficient licenses have been purchased 
including maintenance extensions. Technical support 
is available. Tool obsolescence has been addressed. 

Integrated 
development 
environment 

Software 
development 
library 

The software development library exists and is 
maintained. The software development library is 
inclusive of all teammates and disciplines. Training 
exists in the usage and maintenance of the software 
development library. The software development 
library is updated to reflect changes that impact 
software development. 

The software development library has been 
maintained as planned. Training is kept current. 

Integrated 
development 
environment 

Software 
Development Files 

Software development file (SDF) processes exist, 
and are effective, followed, and maintained. The 
software development file processes are updated to 
reflect changes that impact software development. 

Software development files (SDF) have been 
properly maintained and demonstrate that the 
applicable software development processes have 
been adhered to. 

Operational 
Support 
Environment 

Resources Plan is in place for acquisition and installation of the 
necessary resources for operational support, 
including tools, equipment, and facilities.  

Adequate tools, equipment and facilities are available 
to support anomaly analysis and verification. Tool 
obsolescence has been addressed. 



 

71 

Resource Area 
Early Life Cycle Criteria 

Software Requirements Readiness (SAR) 
Late Life Cycle Criteria 

Build Turnover Readiness (BTR) 

Software 
Integration 
and 
Verification 
Environment 

Resources Plan is in place for acquisition and installation of the 
necessary resources for software integration and 
verification, including tools, equipment, and facilities. 
Security requirements have been adequately 
addressed in the plan. The planned software 
integration and test environment supports the 
project’s processes and tools. 

Sufficient equipment, including spares and 
consumables, is available to support software 
integration and verification plans. All necessary test 
tools, simulators, and emulators are available. 
Networks meet software integration and verification 
throughput requirements. Security gateways meet 
security requirements and have sufficient 
performance to meet software integration and 
verification requirements.  

Software 
Integration 
and 
Verification 
Environment 

Tools Tools are identified (e.g., test beds, test harness, 
analysis model, auto generation of test scripts, 
simulators, emulators), and sufficient licenses have 
been purchased including maintenance extensions. 
Technical support is available. Tools are effective for 
software integration and verification needs.  

Tools are effective for software integration and 
verification needs. Sufficient licenses have been 
purchased including maintenance extensions. 
Technical support is available. Tool obsolescence 
has been addressed. 

Software 
Maintenance 
Environment 

Resources Plan is in place for acquisition and installation of the 
necessary resources for software maintenance, 
including tools, equipment, and facilities. Security 
requirements have been adequately addressed in the 
plan. 

Adequate tools, equipment, and facilities are 
available to support software maintenance as 
applicable to the software life cycle and contract. 
Tool obsolescence has been addressed. 

System 
Integration 
and 
Verification 
Environment 

Resources Sufficient resources are planned to support software 
integration and test needs in the system integration 
and verification environment.  

Software resources are available to support software 
integration and test needs in the system integration 
and verification environment. 

 
  



 

72 

  



 

73 

4. Acronyms 

ASIC Application Specific Integrated Circuit 
ATAM Architecture Trade-off Analysis Method 
BTR Build Turnover Review 
CDR Critical Design Review 
CM Configuration Management 
CMMI Capability Maturity Model Integration 
CMU Carnegie Mellon University 
CONOPS Concept of Operations 
COTS Computer Off the Shelf 
CSCI Computer Software Component Item 
DITL Day in the Life 
EMD Engineering and Manufacturing Development (life cycle phase) 
FMEA Failure Mode, and Effects Analysis 
FMECA Failure Mode, Effects, and Criticality Analysis 
FPGA Field-Programmable Gate Array 
FRR Flight Readiness Review 
FSM Functional Size Management 
GOTS Government Off the Shelf 
HIL Hardware in-the-loop 
HMI Human Machine Interface 
HIS Human Systems Integration 
I&T Integration and Test 
IA Information Assurance 
IBR Integrated Baseline Review 
ICD  Interface Control Document 
ICR Initial Checkout Review 
IEC International Electro-technical Commission 
IEEE Institute of Electrical and Electronics Engineers 
IRS Interface Requirements Specification 
ISBN International Standard Book Number 
ISO International Organization for Standardization 
IV&V Independent Verification and Validation 
KPMs Key Performance Measures 
KPPs Key Performance Parameters 
MIL Military 
MRR Mission Readiness Review 
NDI Non-developed item includes COTS, GOTS, reuse software, and open source 

software. NDI can be singular or plural. 
O&S Operations and Support (life cycle phase) 
OPSCON Operations Concept 
ORB Object Request Broker 
PDR Preliminary Design Review 
PMBOK Project Management Body of Knowledge 
PSR Pre-Ship Review 
RMA Reliability, Maintainability, Availability 
SAR Software Architecture Review 
SDF Software Development File 
SDR System Design Review 
SEI Software Engineering Institute 
SFR System Functional Review 



 

74 

SLCM Software Life Cycle Model 
SRA Software Readiness Assessment 
SRR System Requirements Review 
STD Standard 
SQuaRE Software Product Quality Requirements and Evaluation 
SW Software 
TD Technology Development (life cycle phase) 
TLYF Test like you fly 
TOR Technical Operating Reference 
TPM Technical Performance Measure 
TRR Test Readiness Review 
UML Unified Modeling Language 
VCRM Verification Cross Reference Matrix 
VHSIC Very-High-Speed Integrated Circuit 
 



 

75 

Appendix A. Glossary 

The terms in Table 5 are intended to provide context for the criteria and assessment process where the 
reader may be unfamiliar with a word or phrase, or where the term may have multiple conflicting 
interpretations requiring further distinction. Definitions may have been altered from the sources listed 
to provide additional contextual clarification. Sources are included only to give the user the option to 
research the topic further and should not be interpreted as a requirement for compliance. 



 

76 

Table 5. Glossary 

Term Definition Source 

Algorithm (1) A finite set of well-defined rules for the solution of a problem in a finite number of 
steps.  

(2) A sequence of operations for performing a specific task.  

(3) A finite ordered set of well-defined rules for the solution of a problem Example: a 
complete specification of a sequence of arithmetic operations for evaluating sine x to 
a given precision. 

(1 - 2) (ISO/IEC 24765:2009 
Systems and software engineering 
vocabulary) 

(3)  (ISO/IEC 2382-1:1993 
Information technology--Vocabulary--
Part 1: Fundamental terms, 
01.05.05) 

(Example) 
http://pascal.computer.org/sev_displ
ay/index.action  

Algorithm Design 
Document 

An algorithm design document provides a description of the algorithms, theoretical 
basis, mathematical order of computational burden as a function of inputs and 
stopping criteria, and an outline of the realization in an algorithm design language or 
pseudo-code appropriate for the software development team. 

G. Whittaker 

Allocated 
Requirements 

Requirements may be “allocated” to separate builds or increments or to specific 
architectural elements of an existing or envisioned architecture in a divide and 
conquer strategy. During requirements analysis and development, typically at the 
system level a decision is made to “allocate” requirements to software, firmware, or 
hardware. Various principles and objectives may drive the allocation process such 
as commonality of operational or functional area, priority of capabilities, risk 
reduction, incremental effort sizing or to satisfy specific quality attributes such as 
performance, scalability, reliability, etc. 

G. Whittaker 

Allocation (1) The process of distributing requirements, resources, or other entities among the 
components of a system or program. 

(2) The result of the distribution of requirements, resources, or other entities among 
the components of a system or program.  

(3) The decision to assign a function or decision to hardware, software, or humans.  

Note: Allocation may be made entirely to hardware, software, or humans, or to some 
combination, to be resolved upon further functional decomposition. 

(1 -2)  (ISO/IEC 24765:2009 
Systems and software engineering 
vocabulary) 

(3) (IEEE 1220-2005 IEEE Standard 
for the Application and Management 
of the Systems Engineering Process, 
3.1.3)  



 

77 

Term Definition Source 

Analysis Detailed examination of the elements or structure of something, typically as a basis 
for discussion or interpretation (e.g.,statistical analysis, an analysis of popular 
culture). 

For example, an analysis of architectural alternatives compares desired architecture 
attributes with several candidate architectures in order to identify the architecture 
that most effectively satisfies the desired attributes through its structure, layers, 
functional segregation, scalability and expected usage. A statistical analysis of 
software defects and trends can be made to provide an estimate of latent defects in 
delivered products that will turn have to be dealt with by subsequent life cycle 
phases. 

Oxford Online Dictionary 
(http://oxforddictionaries.com/view/e
ntry/m_en_us1221618#m_en_us122
1618) 

Example by G. Whittaker 

Analysis Results Analysis results need to be documented in a form that provides objective evidence 
for reviewers and assessors. Key elements include statement of purpose and scope 
of analysis, assumptions and constraints, criteria that were applied for the conduct of 
the analysis, methodology and experimental design when appropriate,  names and 
roles of people who participated in the analysis, dates for Technical exchange 
meetings or other key events that supported the development of the analysis.  

G. Whittaker 

Anomaly (1) Condition that deviates from expectations, based on requirements specifications, 
design documents, user documents, or standards, or from someone’s perceptions or 
experiences.  

(2) Anything observed in the documentation or operation of software or system that 
deviates from expectations based on previously verified software products, 
reference documents, or other sources of indicative behavior. 

(1)  (IEEE 1028-2008 IEEE Standard 
for Software Reviews and Audits, 
3.1) 

(2)  (IEEE 829-2008 IEEE Standard 
for Software and System Test 
Documentation, 3.1.4) 

Anomaly Handling Anomaly handling is a term used in multiple domains, including development, test, 
operations, and fault management. 

(1) Development and Test activities need to document the anomalous behavior and 
input conditions that lead to it so that developers can more effectively identify causes 
and corrective actions. 

(2) Operators need clear guidelines and procedures for expeditiously addressing 
anomalies as they occur, so that evidence for root cause analysis is not 
inadvertently lost while trying to restore normal service after an unexplained anomaly 
has occurred.  

(3) Fault management must handle faults in a systematic fashion that ensures 
graceful degradation of service while protecting mission assets from lethal 
excursions in state space. 

G. Whittaker 



 

78 

Term Definition Source 

Appraisals In the CMMI Product Suite, an examination of one or more processes by a trained 
team of professionals using an appraisal reference model as the basis for 
determining, at a minimum, strengths and weaknesses.  

See also “assessment.” 

CMU/SEI-2006-TR-008, CMMI® for 
Development, Version 1.2 

Architecture (1) Fundamental organization of a system embodied in its components, their 
relationships to each other, and to the environment, and the principles guiding its 
design and evolution.  

(2) The organizational structure of a system or component.  

(3) The organizational structure of a system and its implementation guidelines.  

Note: sometimes refers to the design of a system’s hardware and software 
components.  

Syn: architectural structure  

See also: component, module, subprogram, routine. 

(1) (ISO/IEC 15288:2008 Systems 
and software engineering--System 
life cycle processes, 4.5) 

(2 3) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 



 

79 

Term Definition Source 

Architecture 
Principles 

(1) Architecture principles are abstractions of successful strategies, design patterns 
or solution approaches. Divide and conquer as a general principle has been 
successfully applied in many domains fraught with overwhelming complexity, and it 
is the root of many architectural principles such as: object oriented design, modular 
design, layered architecture, n-tiers, and service-oriented architecture. Applying a 
particular architectural principle establishes a constraint on the design space and 
consequently has an effect on the quality attributes of the solution. Loose coupling is 
a principle that promotes maintainable composition of reusable services without 
undue stress on synchronized governance; conversely, monolithic construction 
demands tight integration and control of all components to yield optimal performance 
at the cost of high maintenance effort. 

(2) Architecture principles can roughly be separated into two sets: functional and 
constructional principles. This separation is based on the two different notions of 
systems. Functional principles restrict and guide the functional (behavioral) part of a 
system; they say something about the black box view of a system. Constructional 
principles restrict and guide the constructional part of a system; they say something 
about the white box view of a system.  

An example of a functional principle can be: The system should expose its 
functionality through web services. This principle influences the functionality of the 
system (of all systems built using this architectural principle). This principle also 
identifies (a part of) the project which should create or change the actual system.  

An example of a constructional principle can be: The system should consist of 
modular, reusable parts. This principle influences the quality attributes of a system. It 
also identifies the project which should create or change the actual system. 
Constructional principles address topics as availability, usability, security, stability, 
maintainability, etc.  

Note: also see  ATAM - Architectural Tradeoff Analysis Method  

(1) G. Whittaker 

(2) The Value of Architecture, Johan 
den Haan 
(http://www.theenterprisearchitect.eu
/archive/2007/10/27/the-value-of-
architecture)  



 

80 

Term Definition Source 

Architecture views or 
Viewpoints 

An architecture view or viewpoint is a selected set of architectural data that has been 
organized to facilitate visualization in an understandable way. An Architectural 
Description can be visualized in a number of formats, such as dashboard, fusion, 
textual, composite, or graphics, which present data and derived information collected 
in the course of the development of an Architectural Description. A view is only a 
presentation of a portion of the architectural data, in the sense that a photograph 
provides only one view of the object within the picture, not the entire representation 
of that object. Figure 3.4.2-1 provides a graphical representation of the architecture 
viewpoints in DoDAF V2.0. 

DoDAF 2.0 volume 1: Introduction, 
Overview, and Concepts, Manager’s 
Guide, 28 May 2009 

available at:  

https://www.us.army.mil/suite/page/4
54707 

As-built Final software products (e.g., software requirements, architecture, design 
documentation) that are consistent with the final implementation are called “as-built.” 

G. Whittaker  



 

81 

Term Definition Source 

As-built 
Documentation 

As-built software products often differ from their original design and specifications 
due to discoveries and refinements that were made during the course of 
development. As-built documentation updates the original documentation to correctly 
represent the as-built product. 

G. Whittaker 

As-run Procedures Test procedures often need to be red-lined during test dry runs and during run for 
record. As-run procedures reflect the actual procedures run vice the originally 
developed procedures. 

G. Whittaker 

Assessment An evaluation of processes, products, or resources against a defined set of criteria. MAIW SW Team 

Assurance Justified confidence that a system will function as intended in its environment of use. Assurance Cases for Medical 
Devices 2011, C. Weinstock, SEI 

Assurance Case (1 
& 2) 

(1) A documented body of evidence that provides a convincing and valid argument 
that a specified set of critical claims regarding a system’s properties are adequately 
justified for a given application in a given environment. 

(2) An assurance case is a means to provide grounds for confidences and to aid 
decision making. The assurance case has one or more top-level claims in which 
confidence is needed and has supporting arguments connecting the top-level claims 
with multiple levels of sub-claims. The sub-claims are in turn supported by evidence 
and where appropriate, assumptions.  

(1) Structured Assurance Cases: 
Three Common Standards, T. Scott 
Ankrum and Alfred H. Kromholz, The 
MITRE Corporation, October 30, 
2009. 

(2) IEEE P15026-1/D1 Draft Trial-
Use Standard for Adoption of 
ISO/IEC TR 15026-1:2010, Systems 
and Software Engineering - Systems 
and Software Assurance - Part 1: 
Concepts and Vocabulary. 



 

82 

Term Definition Source 

Assurance Case (3) (3) General rules for IEEE 15026 compliance are:  

 The project shall establish and maintain an assurance case. 

 The project shall ensure that: 

– Goals and objectives for safety, security, dependability and any other 
designated critical properties are formulated. 

– Product assurance-related objectives, properties, or characteristics are 
explicitly selected for special attention and application of this standard to 
address the goals and objectives. 

– Requirements for the achievement of these objectives, properties, or 
characteristics are defined. 

– Measures for the requirements are selected and related to the desired 
characteristics. 

– Criteria for the achievement or degree or achievement of these objectives, 
properties, or characteristics are selected and traced to requirements. 

– Approaches for achieving the objectives, properties, or characteristics are 
planned, designed, and implemented, as well as demonstrating and 
documenting that achievement. 

– The extent of achievement is continuously monitored, documented, and 
communicated to stakeholders and managers. 

– An assurance case documenting and communicating the extent of 
achievement is specified, developed, and maintained as an element of the 
system. 

– The artifacts for documenting, analyzing, and communicating the required or 
claimed properties and characteristics and the extent of achievement are 
specified, developed, and maintained. 

– Requirements of the approval authority are satisfied and necessary licenses 
or certifications are received. 

As defined in  IEEE 15026, scenarios describing overall capability, dependability, 
safety, security, etc. 

(3) Proposed Revision of ISO/IEC 
15026: Status Report to MITRE 
TEM, IEEE CS Liaison 
Representative to ISO/IEC JTC 1/SC 
7, Jim Moore, August 2007. 



 

83 

Term Definition Source 

ATAM (Architecture 
Tradeoff Analysis 
Method) 

The SEI Architecture Tradeoff Analysis Method (ATAM) is the leading method in the 
area of software architecture evaluation. An evaluation using the ATAM typically 
takes three to four days and gathers together a trained evaluation team, architects, 
and representatives of the architecture’s various stakeholders. Proven benefits of 
the ATAM include: 

 Clarified quality attribute requirements 
 Improved architecture documentation 
 Documented basis for architectural decisions 
 Identified risks early in the life cycle 
 Increased communication among stakeholders 

Business drivers and the software architecture are elicited from project decision 
makers. These are refined into scenarios and the architectural decisions made in 
support of each one. Analysis of scenarios and decisions results in identification of 
risks, non-risks, sensitivity points, and tradeoff points in the architecture. Risks are 
synthesized into a set of risk themes, showing how each one threatens a business 
driver.  

The most important results are improved architectures. The output of an ATAM is an 
out-brief presentation and/or a written report that includes the major findings of the 
evaluation. These are typically: 

 The architectural styles identified 

 A “utility tree” — a hierarchic model of the driving architectural requirements 

 The set of scenarios generated and the subset that were mapped onto the 
architecture 

 A set of quality-attribute-specific questions that were applied to the architecture 
and the responses to these questions 

 A set of identified risks 

 A set of identified non-risks 

ATAM Architecture Tradeoff Analysis 
Method, 
(http://www.sei.cmu.edu/architecture/
tools/atam/) 



 

84 

Term Definition Source 

ATAM Diagram This diagram accompanies the glossary entry for ATAM 

 

(http://www.sei.cmu.edu/architecture/
tools/atam/) 

Audit (1) An independent examination of a software product, software process, or set of 
software processes to assess compliance with specifications, standards, contractual 
agreements, or other criteria. 

(2) Systematic, independent, and documented process for obtaining audit evidence 
and evaluating it objectively to determine the extent to which audit criteria are 
fulfilled. 

Note: An audit should result in a clear indication of whether the audit criteria have 
been met.  

(1) (IEEE 1028-2008 IEEE Standard 
for Software Reviews and Audits, 
3.2)  

(2) (ISO/IEC 15288:2008 Systems 
and software engineering--System 
life cycle processes, 4.6)  



 

85 

Term Definition Source 

Behavioral Behavioral vs. static analysis examines software in action vs. the software code. 
Behavior entails transitioning states and modes, executing rules, work flows, 
dynamic performance, resource consumption and management, etc. 

G. Whittaker 

Bi-directional 
Traceability 

Bi-directional traceability between sets A and B, (e.g., requirements, architectural 
elements, test procedures) means that the following mappings exist: from each 
member of A to one or more members of B; and from each member of B to one or 
more members of A. 

G. Whittaker 

Build Scripts A set of reusable procedures, expressed in a scripting language interpretable by a 
tool such as Make or ANT to automate the building of software products. They are 
typically used to encapsulate complex build instructions and to enforce systematic 
and correct building of executables or dynamic load libraries, shared libraries, etc. 

G. Whittaker 

Coding (1) In software engineering, the process of expressing a computer program in a 
programming language.  

(2) The transforming of logic and data from design specifications (design 
descriptions) into a programming language. 

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2)  (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 



 

86 

Term Definition Source 

Communication 
Pattern 

Communication patterns are very important to the design effort and exist at many 
levels of abstraction; three key levels are described here:  

(1) At the symbol and information structure level, communication patterns are design 
patterns for input/output protocols and may specify specific symbol or bit sequences 
to be used for signifying the demarcation of information or data elements composing 
a message structure or communication protocol. 

(2) At an architectural level, communication patterns refer to critical information or 
data flow paths revealed by analysis of command, control, and telemetry scenarios. 
Executable architectures are used to model the high level behavior that exhibits 
these patterns so that potential performance bottlenecks or single points of failure 
are eliminated in the early design phase.  

(3) During detailed software design, modules, components and functions are defined 
to realize the software architectural elements (and emulate or simulate hardware 
elements) to show how they will satisfy the imposed requirements. At this level 
communication patterns between software modules are typically described in UML 
sequence diagrams that illustrate the temporal ordering and sequential dependency 
of inter-module calls necessary to satisfy a particular use-case or function. 
Sequence diagrams may be created for a number of scenarios driven by DITL or 
TLYF or other end-to-end stress testing requirements. Key performance, reliability 
and information assurance requirements come into play at this level and frequently 
drive competing design concerns.  

(1 - 3) G. Whittaker 

Completeness (1) In some cases completeness is a measureable objective quantity indicating the 
degree to which a set of actions have been executed and finished (e.g., the 
completeness of test results or the completeness of a particular software build).  

(2) In other cases the completeness is taken as a subjective judgment regarding the 
adequacy of an information product (e.g., requirements, architecture, design) to 
capture the developer’s and acquirer’s needs. For example, completeness in test-
procedures indicates the adequacy of the procedures to cover nominal and off-
nominal excursions - these are almost never complete in the former sense due to 
the combinatorial nature of input cases required, but a large set of representative 
cases may be necessary to establish a spanning range of input and environmental 
conditions when stress testing a critical software component. Such testing may be 
said to exhibit “completeness” but it is really only a subjective assessment based on 
software testing experience. 

(1-2) G. Whittaker 



 

87 

Term Definition Source 

Conceptual Data 
Model 

A data model that illustrates the data groups as they are seen by the user.  (ISO/IEC 24570:2005 Software 
engineering -- NESMA functional 
size measurement method version 
2.1 -- Definitions and counting 
guidelines for the application of 
Function Point Analysis) 

Configuration 
Identification 

(1) An element of configuration management, consisting of selecting the 
configuration items for a system and recording their functional and physical 
characteristics in technical documentation. 

(2) The current approved technical documentation for a configuration item as set 
forth in specifications, drawings, associated lists, and documents referenced therein. 

(1 - 2) (ISO/IEC 24765:2009 
Systems and software engineering 
vocabulary) 

Configuration Item (1) Entity within a configuration that satisfies an end use function and that can be 
uniquely identified at a given reference point.  

(2) Item or aggregation of hardware, software, or both that is designed to be 
managed as a single entity.  

(3) Component of an infrastructure or an item which is, or will be, under the control 
of configuration management.  

(4) An aggregation of hardware, software, or both, that is designated for 
configuration management and treated as a single entity in the configuration 
management process.  

(5) Aggregation of work products that is designated for configuration management 
and treated as a single entity in the configuration management process. 

Note: Configuration items may vary widely in complexity, size and type, ranging from 
an entire system including all hardware, software and documentation, to a single 
module or a minor hardware component. 

(1) (ISO/IEC 12207:2008 Systems 
and software engineering--Software 
life cycle processes, 4.7)  

(2) (ISO/IEC 19770-1:2006 
Information technology -- Software 
asset management -- Part 1: 
Processes, 3. 2)  

(3)  (ISO/IEC 20000-1:2005 
Information technology -- Service 
management -- Part 1: Specification, 
2.4) 

(4) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(5)  (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

(Note) 
http://pascal.computer.org/sev_displ
ay/index.action  

Configuration Item 
List 

A table or listing of configuration items. G. Whittaker 



 

88 

Term Definition Source 

Configuration 
Management 

(1) A discipline applying technical and administrative direction and surveillance to: 
identify and document the functional and physical characteristics of a configuration 
item, control changes to those characteristics, record and report change processing 
and implementation status, and verify compliance with specified requirements.  

(2) Technical and organizational activities comprising configuration identification, 
control, status accounting, and auditing. 

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2) (ISO/IEC 29881:2008 Information 
technology--Software and systems 
engineering--FiSMA 1.1 functional 
size measurement method, 4.9) 

Contingency Plan A plan for dealing with a risk factor should it become a problem.  (ISO/IEC 24765:2009 Systems and 
software engineering vocabulary)  

Controlled Controlled products are governed by a configuration management process, but not 
necessarily required to be approved by a configuration control board. In other words 
a check-in, check-out, and version management capability is used to ensure that 
controlled documents have official versions which are recoverable during their life 
cycle. 

G. Whittaker 

COTS (1) A product available for purchase and use without the need to conduct 
development activities. 

(2) An item that a supplier offers to several acquirers for general use.  

Note: COTS software product includes the product description (including all cover 
information, data sheet, web site information, etc.), the user documentation 
(necessary to install and use the software), the software contained on a computer 
sensible media (disk, CD-ROM, internet downloadable, etc.). Software is mainly 
composed of programs and data. This definition applies also to product descriptions, 
user documentation and software which are produced and supported as separate 
manufactured goods, but for which typical commercial fees and licensing 
considerations may not apply.  

See Also: software product. 

(1)  (ISO/IEC 90003:2004 Software 
engineering -- Guidelines for the 
application of ISO 9001:2000 to 
computer software, 3.4) 

(2)  (ISO/IEC 15289:2006 Systems 
and software engineering--Contents 
of systems and software life cycle 
information products 
(Documentation), 5.2) 

COTS Selection The process of selecting COTS or the results of such a selection process. The 
selection process should follow a set of rational criteria and assumptions clearly 
documented including any trade-off analysis (e.g., cost vs. benefits) that was 
conducted to arrive at the final COTS selection. 

G. Whittaker 

Criticality The degree of impact that a requirement, module, error, fault, failure, or other 
characteristic has on the development or operation of a system. 

(IEEE 829-2008 IEEE Standard for 
Software and System Test 
Documentation, 3.1.9) 



 

89 

Term Definition Source 

Criticality Analysis A procedure by which each potential failure mode is ranked according to the 
combined influence of severity and probability of occurrence. Criticality Analyses are 
typically performed as part of a Failure Mode Effects Criticality Analysis (FMECA). 
Per MIL-STD-1629A Criticality Analysis (task 102) follows the Failure Mode and 
Effects Analysis (FMEA, task 101). 

MIL-STD-1629A  

Criticality Analysis 
Report 

The results of the FMEA and other related analyses shall be documented in a report 
that identifies the level of analysis, summarizes the results, documents the data 
sources and techniques used in performing the analysis, and includes the system 
definition narrative, resultant analysis data, and worksheets. The worksheets shall 
be organized to first display the highest indenture level of analysis and then proceed 
down through decreasing indenture levels of the system. The ground rules, analysis 
assumptions, and block diagrams shall be included, as applicable, for each 
indenture level analyzed. Interim reports shall be available at each design review to 
provide comparisons of alternative designs and to highlight the Category I and 
Category II failure modes, the potential single failure points, and the proposed 
design corrections. The final report shall reflect the final design and provide 
identification of the Category I and Category II failure modes and the single failure 
points which could not be eliminated from the design. 

MIL-STD-1629A 

Data Model (1) A graphical and textual representation of analysis that identifies the data needed 
to achieve system mission, functions, goals, objectives, and strategies. 

(2) A model about data by which an interpretation of the data can be obtained in a 
modeling tool.  

Note: A data model is one that may be encoded and manipulated by a computer. A 
data model identifies the entities, domains (attributes), and relationships 
(associations) with other data and provides the conceptual view of the data and the 
relationships among data. 

(1) (IEEE 1320.2-1998 (R2004) IEEE 
Standard for Conceptual Modeling 
Language Syntax and Semantics for 
IDEF1X97 (IDEFobject), 3.1.44) 

(2) (ISO/IEC 15474-1:2002 
Information technology -- CDIF 
framework -- Part 1: Overview, 4.2)  



 

90 

Term Definition Source 

Database (1) A collection of interrelated data stored together in one or more computerized 
files.  

(2) A collection of data organized according to a conceptual structure describing the 
characteristics of the data and the relationships among their corresponding entities, 
supporting one or more application areas.  

(3) A collection of data describing a specific target area that is used and updated by 
one or more applications. 

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2) (ISO/IEC 2382-1:1993 
Information technology--Vocabulary--
Part 1: Fundamental terms, 
01.08.05) 

(3) (ISO/IEC 29881:2008 Information 
technology--Software and systems 
engineering--FiSMA 1.1 functional 
size measurement method, A.5) 

Day in the Life 
Testing 

A scenario based on or composed of a sequence of operational activities that must 
be supported by the objective system that spans a significant range of 
interdependent capabilities and services provided by the system.  

G. Whittaker 

Demonstration A dynamic analysis technique that relies on observation of system or component 
behavior during execution, without need for post-execution analysis, to detect errors, 
violations of development standards, and other problems. One of the four types of 
verification methods: demonstration, inspection, test, and analysis. 

(ISO/IEC 24765:2009 Systems and 
software engineering vocabulary) 

Dependability  (1) Dependability is defined as the trustworthiness of a computer system such that 
reliance can justifiably be placed on the service it delivers. The service delivered by 
a system is its behavior as it is perceived by its user(s); a user is another system 
(human or physical) which interacts with the former.  

(2) Dependability encompasses reliability, maintainability, and availability. 

(1) From Laprie, J.C., Editor. 
Dependability: Basic Concepts and 
Terminology. Vienna, Austria: 
Springer-Verlag, 1992, as cited in  
Technical Note CMU/SEI-2004-TN-
016, Dependability Cases - 
Performance Critical Systems, 
Weinstock, Charles. B., 
Goodenough, John B., and Hudak, 
John J. 

(2) M. Hecht 



 

91 

Term Definition Source 

Design  (1) The process of defining the architecture, components, interfaces, and other 
characteristics of a system or component.  

(2) The result of the process in (1). 

(3) The process of defining the software architecture, components, modules, 
interfaces, and data for a software system to satisfy specified requirements.  

(4) The process of conceiving, inventing, or contriving a scheme for turning a 
computer program specification into an operational program.  

(5) The activity that links requirements analysis to coding and debugging.  

(6) The stage of documentation development that is concerned with determining 
what documentation will be provided in a product and the nature of that 
documentation. 

(1 - 5) (ISO/IEC 24765:2009 
Systems and software engineering 
vocabulary) 

(6) (ISO/IEC 26514:2008 Systems 
and software engineering--
requirements for designers and 
developers of user documentation, 
4.13) 

Design Patterns A description of the problem and the essence of its solution to enable the solution to 
be reused in different settings.  

Note: not a detailed specification, but a description of accumulated wisdom and 
experience. 

(ISO/IEC 24765:2009 Systems and 
software engineering vocabulary) 

Deviation (1) A departure from a specified requirement.  

(2) A written authorization, granted prior to the manufacture of an item, to depart 
from a particular performance or design requirement for a specific number of units or 
a specific period of time. 

(3) A departure from a released plan or controlled process. 

(1)  (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

(3) MAIW SW committee 

Diagnostic Pertaining to the detection and isolation of faults or failures (e.g., a diagnostic 
message, a diagnostic manual). 

(ISO/IEC 24765:2009 Systems and 
software engineering vocabulary) 



 

92 

Term Definition Source 

Document (1) A uniquely identified unit of information for human use, such as a report, 
specification, manual or book, in printed or electronic form. 

(2) To create a document as in (1).  

(3) To add comments to a computer program.  

(4) An item of documentation.  

(5) A medium and the information recorded on it, which generally has permanence 
and can be read by a person or a machine.  

(6) Information and its supporting medium.  

(7) A separately identified piece of documentation which could be part of a 
documentation set, (e.g., In software engineering: project plans, specifications, test 
plans, user manuals). 

Note: Documents include both paper and electronic documents.  

(1)  (ISO/IEC TR 9294:2005 
Information technology -- Guidelines 
for the management of software 
documentation, 3.1) 

(2)  (IEEE 829-2008 IEEE Standard 
for Software and System Test 
Documentation, 3.1.11) 

(3) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(4) (ISO/IEC 15910:1999 Information 
technology -- Software user 
documentation process, 4.1) 

(5) (IEEE 829-2008 IEEE Standard 
for Software and System Test 
Documentation, 3.1.11) 

(6) (ISO/IEC 20000-1:2005 
Information technology -- Service 
management -- Part 1: Specification, 
2.6) 

(7)  (ISO/IEC 26514:2008 Systems 
and software engineering--
requirements for designers and 
developers of user documentation, 
4.15) 

Earned Value 
Management (EVM) 

A management methodology for integrating scope, schedule, and resources, and for 
objectively measuring project performance and progress. Performance is measured 
by determining the budgeted cost of work performed (i.e., earned value) and 
comparing it to the actual cost of work performed (i.e., actual cost). 

(A Guide to the Project Management 
Body of Knowledge (PMBOK® 
Guide) -- Fourth Edition) 



 

93 

Term Definition Source 

Emulation (1) A model that accepts the same inputs and produces the same outputs as a given 
system.  

(2) The process of developing or using a model.  

(3) The use of a data processing system to imitate another data processing system, 
so that the imitating system accepts the same data, executes the same programs, 
and achieves the same results as the imitated system.  

See Also: simulation 

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

(3) (ISO/IEC 2382-1:1993 
Information technology--Vocabulary--
Part 1: Fundamental terms, 
01.06.02)  

Dependability  The ability to deliver service that can justifiably be trusted. This definition stresses 
the need for justification of trust.  

As developed over the past three decades, dependability is an integrating concept 
that encompasses the following attributes: availability--readiness for correct service; 
reliability--continuity of correct service; safety--absence of catastrophic 
consequences on the user(s) and the environment; confidentiality--absence of 
unauthorized disclosure of information; integrity--absence of improper system 
alterations; maintainability--ability to undergo, modifications, and repairs. 

The dependability specification of a system must include the requirements for the 
dependability attributes in terms of the acceptable frequency and severity of failures 
for the specified classes of faults and a given use environment. One or more 
attributes may not be required at all for a given system. 

Dependability and its threats: A 
Taxonomy, Algirdas Avizˇienis, Jean-
Claude Laprie, Brian Randell 

 

End-to-End Testing End-to-end testing typically utilizes external interfaces to stimulate system activity 
that is representative of typical usage (e.g., DITL, TLYF) as well as stress testing 
critical communication patterns throughout the software and hardware system 
implementation. Some of these tests may require specialized instrumentation to 
measure internal parameters during the course of the testing or to introduce 
spurious signals, noise, faults, or other information on internal interfaces to represent 
environmental effects or other stressing phenomena. 

G. Whittaker 



 

94 

Term Definition Source 

Error Handling Error handling refers to the anticipation, detection, and resolution of programming, 
application, and communications errors. Specialized software routines, called error 
handlers, are available for some applications. The best routines of this type forestall 
errors if possible, recover from them when they occur without terminating the 
application, or (if all else fails) gracefully terminate an affected application and save 
the error information to a log file. 

http://searchsoftwarequality.techtarg
et.com/definition/error-handling 

Executable 
Architecture (EA) 

(1) An Executable Architecture, in general, is the description of a system architecture 
(including software and/or otherwise) in a formal notation, together with the tools 
(e.g., compilers/translators) that allow the automatic or semi-automatic generation of 
artifacts (e.g., Capability Gap Analysis [CGA], models, software stubs, Military 
Scenario Definition Language [MSDL]) from that notation and which are used in the 
analysis, refinement, and/or the implementation of the architecture described. 

(2) A dynamic model of sequenced activities/events (concurrent or sequential) 
performed at an operational node by roles (within organizations) using resources 
(systems) to produce and consume information and data. 

(3) A modeling and simulation approach that enables event driven or time stepped 
activation of modes and states of the modeled system. Different system elements 
(hardware or software) of an executable architecture may be elaborated within the 
model to differing levels of detail to analyze specific communication patterns and 
their effects on overall model performance.  

(1) Wikipedia 

(2) Executable Architecture 
Methodology for Analysis, FY04 
Final Report (Pawlowski III, et al., 
2004) 

(3) G. Whittaker 

eXtreme 
Programming 

One of several agile methodologies that incrementally release capabilities to the 
customer. See the cited reference for a complete definition of the features of 
eXtreme programming. 

G. Whittaker 

For details see: Kent Beck 
</wiki/Kent_Beck> or Cynthia 
Andres. “Extreme Programming 
Explained: Embrace Change,” 
Second Edition, Addison-Wesley. 

Fault (1) A manifestation of an error in software. 

(2) An incorrect step, process, or data definition in a computer program.  

(3) A defect in a hardware device or component.  

Note: A fault, if encountered, may cause a failure.  

Syn: bug. 

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

(2 -3) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 



 

95 

Term Definition Source 

Fault Management System functional element(s) that collectively provide system fault tolerance. Fault 
management functionality includes fault detection, fault isolation, fault repair, service 
restoration or transition to safe mode.  

See also: fault tolerance. 

G. Whittaker 

Fault Tolerance (1) The ability of a system or component to continue normal operation despite the 
presence of hardware or software faults.  

(2) The number of faults a system or component can withstand before normal 
operation is impaired.  

(3) Pertaining to the study of errors, faults, and failures, and of methods for enabling 
systems to continue normal operation in the presence of faults.  

Syn: error tolerance; fail safe; fail soft; fault secure; robustness. 

(1 - 3) (ISO/IEC 24765:2009 
Systems and software engineering 
vocabulary) 

Hardware 
Compatibility (1&2) 

(1) Compiled code is said to be compatible with a specific target (hardware) 
processor and memory architecture when it can be loaded and executed on the 
target. This means that the machine architecture (von Neumann, Quantum, etc.) 
instructions, data representation and structure, word size, byte size and bit order 
(endianess) within a byte on the target hardware (processor and storage devices) 
and the buses between the processor, instruction and data stores are what the 
compiler designers expected. In practice it also usually means that a target 
hardware operating system (OS) exists and is compatible with the compiler in that its 
calls to kernel OS services, interrupts and modes of operation are supported.  

(2) In order to avoid the von Neumann bottleneck (instruction and data bus 
limitations) high performance real-time algorithms are often only hardware 
compatible with a specialized processor architecture (e.g., non-von Neuman 
variations of the memory models and characteristics such as content addressable 
memory (CAM), application specific integrated circuits (ASICS) supporting 
specialized cache strategies and instruction pipelines, field programmable gate 
arrays (FPGAs) or parallel computing models such as single instruction multiple data 
-SIMD, multiple instruction multiple data - MIMD, dataflow architecture, etc.) 

(1 - 2) G. Whittaker 



 

96 

Term Definition Source 

Hardware 
Compatibility (3&4) 

(3) General purpose software application development hardware compatibility is 
based on selected programming language compiler and OS availability, satisfactory 
processor speed, required standard peripherals and Input/output (IO) device 
support, graphics display performance, and perhaps some lower level interrupt 
handling, throughput and memory resource capacity requirements. 

(4) Operational system level hardware compatibility means that the software 
architectural and design elements and principles are satisfied or satisfiable (e.g., 
client server, n-tier web service, net-centric, grid or cloud computing, and supporting 
messaging protocols are or can be supported by the configuration of processor(s), 
OS, firmware, device drivers, buses, routers, switches, etc. comprising the target 
system hardware). 

(3 - 4) G. Whittaker 

Hardware in the 
Loop Simulation  
(HIL or HITL) 

Hardware-in-the-loop (HIL) simulation is a technique that is used in the development 
and test of complex real-time embedded systems. HIL simulation provides an 
effective platform by adding the complexity of the system under control to the test 
platform. The complexity of the system under control is included in test and 
development by adding a mathematical representation of all related dynamic 
systems. These mathematical representations are referred to as the “system 
simulation.” The embedded system to be tested interacts with this simulation. 

Wikipedia 



 

97 

Term Definition Source 

Implementation (1) The process of translating a design into hardware components, software 
components, or both. 

(2) The result of the process in (1). 

(3) A definition that provides the information needed to create an object and allow 
the object to participate in providing an appropriate set of services. 

(4) The installation and customization of packaged software. 

(5) Construction.  

(6) The system development phase at the end of which the hardware, software, and 
procedures of the system considered become operational. 

(7) A process of instantiation whose validity can be subject to test.  

(8) Phase of development during which user documentation is created according to 
the design, tested, and revised.  

(1) (ISO/IEC 24765:2009 Systems 
and software engineering vocabulary 

(2) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(3) (ISO/IEC 19500-2:2003 
Information technology -- Open 
Distributed Processing -- Part 2: 
General Inter-ORB Protocol 
(GIOP)/Internet Inter-ORB Protocol 
(IIOP), 3.2.8)  

(4) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

(5) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(6) (ISO/IEC 2382-20:1990 
Information technology--Vocabulary--
Part 20: System development, 
20.04.01)  

(7) (ISO/IEC 10746-3:1996 
Information technology -- Open 
Distributed Processing -- Reference 
Model: Architecture, 9.1.2) 

(8) (ISO/IEC 26514:2008 Systems 
and software engineering--
requirements for designers and 
developers of user documentation, 
4.24) 



 

98 

Term Definition Source 

Information 
Assurance 

Information assurance (IA) is the practice of managing risks related to the use, 
processing, storage, and transmission of information or data and the systems and 
processes used for those purposes. While focused dominantly on information in 
digital form, the full range of IA encompasses not only digital but also analog or 
physical form. Information assurance as a field has grown from the practice of 
information security which in turn grew out of practices and procedures of computer 
security. IA includes physical security, system security, anti-tamper, and privacy, and 
addresses network security and data integrity. 

Wikipedia 

Information 
Assurance Plan 

An IA plan identifies the information assurance model, requirements, standards, and 
practices to be applied and integrated into the software intensive system throughout 
its full life-cycle. The plan should identify those architectural, operational, and 
supporting infrastructure elements that provide key support for the IA strategy. The 
plan should ensure that the designated certification and accreditation agency and 
liaisons are identified and that the acquisition IA SMEs are integrated into the 
system and software coops and design development from the beginning of 
conceptual design and all the way through to final accreditation and authorization to 
operate.  

G. Whittaker 

Installation 
Instructions 

Documented detailed sequential steps and procedures that explain exactly how to 
install a particular software product or set of products on the host system. 

G. Whittaker 

Integration Testing Testing conducted where software components, hardware components, or both are 
combined to evaluate the correctness of the interactions among them in accordance 
with the interface documentation.  

Note: commonly used for both the integration of components and the integration of 
entire systems. 

Adapted from: (IEEE 1012-2004 
IEEE Standard for Software 
Verification and Validation, 3.1.14), 
(IEEE 829-2008 IEEE Standard for 
Software and System Test 
Documentation, 3.1.14) 



 

99 

Term Definition Source 

Interface Design 
Document (IDD) 

(1) A description of the architecture and design of interfaces between systems or 
among the components of a system. These descriptions include control algorithms, 
protocols, data contents and formats, and performance. See Also: interface 
requirements specification (IRS). Sometimes this information is contained in an 
interface control document. 

(2) The interface design description (IDD) describes the interface characteristics of 
one or more systems, subsystems, Hardware Configuration Items (HWCSI), 
Computer Software Configuration Items (CSCIs), manual operations, or other 
system components. An IDD may describe any number of interfaces. 

The IDD can be used to supplement the System/Subsystem Design Description 
(SSDD) (DI-IPSC-81432A), Software Design Description (SDD) (DI-IPC-81435A), 
and Database Design Description (DBDD) (DI-IPSC-81437A). The IDD and its 
companion Interface Requirements Specification (IRS) (DI-IPSC-81434A) serve to 
communicate and control interface design decisions. 

(1) Adapted from (ISO/IEC 
24765:2009 Systems and software 
engineering vocabulary) 

(2) Interface Design Description 
(IDD) DI-IPSC-81436A 

Interface 
Requirements 
Specification (IRS)  

(1) Documentation that specifies requirements for interfaces between systems or 
among the components of a system. These requirements may include constraints on 
formats and timing.  

(2) The Interface Requirements Specification (IRS) specifies the requirements 
imposed on one or more systems, subsystems, Hardware Configuration Items 
(HWCIs), Computer Software Configuration Items (CSCIs), manual operations, or 
other system components to achieve one or more interfaces among these entities. 
An IRS can cover any number of interfaces. 

The IRS can be used to supplement the System/Subsystem Specification (SSS), 
(DI-IPSC-81431A) and Software Requirements Specification (SRS) (DI-IPSC-
81433A) as the basis for design and qualification of the testing of systems and 
CSCIs. 

(1) Adapted from: (IEEE 1012-2004 
IEEE Standard for Software 
Verification and Validation, 3.1.17), 
(IEEE 829-2008 IEEE Standard for 
Software and System Test 
Documentation, 3.1.17) 

(2)  Interface Requirements 
Specification (IRS) DI-IPSC-81434A 

Interface Testing Testing conducted to evaluate whether systems or components pass data and 
control correctly to one another in accordance with the interface documentation. 

See Also: component testing, integration testing, system testing, unit test. 

Adapted from (ISO/IEC 24765:2009 
Systems and software engineering 
vocabulary)  

Lessons Learned The learning gained from the process of performing the project. Lessons learned 
may be identified at any point and included in a lessons learned knowledge base. 

Adapted from (A Guide to the Project 
Management Body of Knowledge 
(PMBOK® Guide) -- Fourth Edition) 



 

100 

Term Definition Source 

Lessons Learned 
Knowledge base 

A store of historical information and lessons learned about both the outcomes of 
previous project selection decisions and previous project performance. 

(A Guide to the Project Management 
Body of Knowledge (PMBOK® 
Guide) -- Fourth Edition) 

Life Cycle Model Framework of processes and activities concerned with the development, operations 
or sustainment of software or systems that may be organized into stages, which also 
acts as a common reference for communication and understanding. 

(ISO/IEC 12207:2008 Systems and 
software engineering--Software life 
cycle processes, 4.12 & 4.16)  

Log (1) Log - a document used to record and describe or denote selected items identified 
during execution of a process or activity. Usually used with a modifier, such as issue, 
quality control, action, or defect.  

(2) Test log - chronological record of relevant details about the execution of tests 

(1) (A Guide to the Project 
Management Body of Knowledge 
(PMBOK® Guide) -- Fourth Edition) 

(2)  (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

Logical data model 
(LDM) 

A logical data model in systems engineering is a representation of an organization’s 
data, organized in terms of entities and relationships, and is independent of any 
particular data management technology. 

Wikipedia 

Maintenance  Software maintenance in software engineering is the modification of a software 
product after delivery to correct faults, to improve performance or other attributes.  

 Wikipedia 
 

Maintenance 
Environment 

Facilities, hardware, software, tools, training and documentation that are required in 
order to maintain a particular set of software.  

Adapted from G. Whittaker   

Mapping A mapping is an assigned correspondence or relationship between two well defined 
families or sets (technically identified as a domain and a co-domain) such that for 
each element of the domain one and only one element of the co-domain is 
designated by the mapping. For example, a set of system requirements may be 
mapped to sets of derived requirements, or sets of architectural elements or sets of 
software requirements. The domain in each of these cases is the set of system 
requirements and the co-domain in each of these cases is the set of subsets (power 
set) of the derived requirements, architectural elements, or software requirements. 
The key is that the mapping designates only one member of the co-domain for each 
element in the domain but there may be many members in the domain that map to 
the same element in the co-domain. 

See Bi-directional traceability and traceability. 

G. Whittaker 



 

101 

Term Definition Source 

Master Software 
Build Plan or Master 
Software Integration 
Plan 

A plan for the implementation and integration of software components into builds or 
increments. The plan must cover the software requirements allocated  to each build 
or increment and describes the sequence of integration of the software units that 
comprise the build or increment.  

G. Whittaker  

Mitigation Plan A plan for actions to reduce the likelihood of a risk occurring or to reduce the 
consequences should it become a problem. 

S. Eslinger 

Modeling, 
Simulation, and 
Analyses (MS&A) 

Modeling and simulation (M&S) or modeling, simulation and analysis (MS&A) 
generally refers to computational models that have been created to explore and 
analyze dynamic system behaviors. MS&A applied to system and software 
architecture is known as Executable Architecture. Other software related examples 
include: reliability, criticality and safety modeling and analyses. 

G. Whittaker 

NDI analysis Non-developmental item analysis is performed in support of trade-off analysis 
between COTS, GOTS and custom developed items to decide on the best strategy 
for the overall program’s requirements and constraints. 

G. Whittaker 

Non-Developmental 
Item 

The term non-developmental is used to describe items that were previously 
developed. For example, for software, a non-developmental item may be COTS, 
GOTS, legacy re-use, or open source. 

MAIW SW Team 

Non-functional 
Requirements 

A requirement that specifies criteria that can be used to judge the operation of a 
system, rather than specific behaviors, (e.g., requirements for design constraints, 
adaptability, quality, RMA).  

MAIW SW Team 

Objective Evidence Data supporting the existence or verity of something. 

Note: Objective evidence may be obtained through observation, measurement, test, 
interviews, document reviews and other means. 

(Adapted from ISO/IEC 15504-
1:2004 Information technology -- 
Process assessment -- Part 1: 
Concepts and vocabulary, 3.24) 

Objective(s) (1) Something toward which work is to be directed, a strategic position to be 
attained, or a purpose to be achieved, a result to be obtained, a product to be 
produced, or a service to be performed.  

Syn: Purpose 

(A Guide to the Project Management 
Body of Knowledge (PMBOK® 
Guide) -- Fourth Edition)  



 

102 

Term Definition Source 

Operator(s) Entity that performs the operation(s) of a system  (ISO/IEC 12207:2008 Systems and 
software engineering--Software life 
cycle processes, 4.22) (ISO/IEC 
15288:2008 Systems and software 
engineering--System life cycle 
processes, 4.13) (ISO/IEC 
15939:2007 Systems and software 
engineering--Measurement process, 
3.30) 

Pass/Fail Criteria Decision rules used to determine whether a software item or a software feature 
passes or fails a test.  

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

Peer Review As used in this document, a peer review is a type of product evaluation 
characterized by: a) action items are documented and tracked to closure; b) defects 
are documented, categorized by type and severity, and tracked to closure; 
c) reviewers are peers of the author of the product being evaluated.  

 MAIW SW Team 

Physical Data Model A physical data model (a.k.a. database design) is a representation of a data design 
which takes into account the facilities and constraints of a given database 
management system. In the lifecycle of a project, it is typically derived from a logical 
data model, though it may be reverse-engineered from a given database 
implementation. A complete physical data model will include all the database 
artifacts required to create relationships between tables or achieve performance 
goals, such as indexes, constraint definitions, linking tables, partitioned tables or 
clusters. The physical data model can usually be used to calculate storage estimates 
and may include specific storage allocation details for a given database system. 

Wikipedia 

Plan A documented form of planning information products - not necessarily a formal 
document. 

See also: Project Plan, Software Development Plan, Test Plan 

G. Whittaker 

Planning Information Information necessary to support the process of creating a plan. The planning 
information may include identification of goals and objectives, constraints, 
processes, and activities that are to be organized, allocated resources and 
sequenced to achieve the planning goals and objectives.  

G. Whittaker 



 

103 

Term Definition Source 

Procedure Defines in detail when and how to perform certain activities or tasks, including tools 
needed. A procedure typically includes the following elements: 

a) Date of issue and status 

b) Scope 

c) Issuing organization 

d) Approval authority 

e) Roles and responsibilities 

f) Relationship to policies, plans and other procedures 

g) Authoritative references 

h) Inputs and outputs 

i) Ordered description of steps to be taken by each participant 

j) Error and problem resolution 

k) Glossary 

l) Change history 

Adapted from ISO/IEC/IEEE 
15288:2008, 5.3.1 

Process Set of interrelated or interacting activities which transforms inputs into outputs. (ISO/IEC 15288:2008 Systems and 
software engineering—System life 
cycle processes, 4.16) (ISO/IEC 
15939:2007 Systems and software 
engineering--Measurement process, 
3.32) 

Product Evaluation An evaluation of a product by knowledgeable reviewers and relevant stakeholders, 
other than the author of the product, against a defined set of criteria. For the purpose 
of this document, a product evaluation is a general term for assessments with 
different levels of formality (e.g., peer reviews, inspections, or walkthroughs). 

  

Program Plan A document that describes the technical and management approach to be followed 
for a program. 

Note: For example: a software development plan. The plan typically describes the 
work to be done, the resources required, the methods to be used, the procedures to 
be followed, the schedules to be met, and the way that the program will be 
organized. 

Adapted from (ISO/IEC 24765:2009 
Systems and software engineering 
vocabulary)  



 

104 

Term Definition Source 

Prototype (1) A preliminary type, form, or instance of a system that serves as a model for later 
stages or for the final, complete version of the system. 

(2) Model or preliminary implementation of a piece of software suitable for the 
evaluation of system design, performance, or production potential, or for the better 
understanding of the software requirements. 

Note: A prototype may be used to get feedback from users for improving and 
specifying a complex human interface, for feasibility studies, or for identifying 
requirements. 

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

(2) (ISO/IEC 15910:1999 Information 
technology—Software user 
documentation process, 4.41)  

Prototyping A hardware and software development technique in which a preliminary version of 
part or all of the hardware or software is developed to permit user feedback, 
determine feasibility, or investigate timing or other issues in support of the 
development process. 

(ISO/IEC 24765:2009 Systems and 
software engineering vocabulary) 

Quality Attribute (1) Characteristic of software, or a generic term applying to quality factors, quality 
subfactors, or metric values. 

(2) Requirement that specifies the degree of an attribute that affects the quality that 
the system or software must possess. 

See also ATAM. 

(1) (IEEE 1061-1998 (R2004) IEEE 
Standard for Software Quality 
Metrics Methodology, 2.17) 

(2) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

Regression Test(ing) (1) Selective retesting of a system or component to verify that modifications have not 
caused unintended effects and that the system or component still complies with its 
specified requirements.  

(2) Testing required to determine that a change to a system component has not 
adversely affected functionality, reliability or performance and has not introduced 
additional defects.  

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2) (ISO/IEC 90003:2004 Software 
engineering—Guidelines for the 
application of ISO 9001:2000 to 
computer software, 3.11)  

Released Released product, or product documentation, as used in this guide, is controlled by a 
configuration management process and in addition has been approved for release 
by a configuration control board or other official board review (e.g., Engineering 
Review Board, Architecture Control Board). 

G. Whittaker 



 

105 

Term Definition Source 

Repeatability  (1) The same stimuli to a system in given initial conditions gives the same expected 
results. Test repeatability is a key driving factor behind all agile, test driven or 
extreme development methods.  

(2) Test repeatability is an attribute of a test, indicating that the same results are 
produced each time the test is conducted.  

(1) Adapted from 
http://www.cydone.com/node/42 

(2) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

Reprogrammability The ability to modify the contents of memory associated with an embedded 
processor (e.g., on-board processors). This Includes modification of computer 
instructions, data, or replacement of the entire memory content. 

MAIW SW Team 

Requirements 
Allocation 

The assignment or budgeting of top-level requirements among the lower-level 
partitioned elements or sub-systems. 

Note: In this manner, the system elements that perform all or part of specific 
requirements are identified.  

Adapted from (ISO/IEC 24765:2009 
Systems and software engineering 
vocabulary) 

Requirements 
Allocation Matrix  

A structure that documents the bi-directional mapping between the software items in 
the system architecture and the system requirements allocated to software. 

G. Whittaker 

Requirements 
Traceability 

Requirements are documented so that each requirement in a higher-level or ‘parent’ 
requirements specification is mapped to one or more ‘child’ requirements in 
associated lower-level requirements specifications. In addition, all requirements in 
the associated lower-level or ‘child’ requirements specifications are mapped to one 
or more parent requirement(s) in the higher level requirement specification. This type 
of mapping is called bi-directional traceability. 

R. Wilkes 

Requirements 
Verification 

See Verification.   

Retest Retest is conducted after corrections have been made in response to a prior test 
failure. 

G. Whittaker 

Reuse The use of existing software or software knowledge to build new software. Wikipedia 

Risk Handling A course of action taken in response to a risk factor. 

Note: includes risk acceptance, risk avoidance, risk transfer, and risk mitigation.  

(ISO/IEC 24765:2009 Systems and 
software engineering vocabulary) 



 

106 

Term Definition Source 

Risk Mitigation (1) A course of action taken to reduce the probability of and potential loss from a risk 
factor. 

(2) [Technique] a risk response planning technique associated with threats that 
seeks to reduce the probability of occurrence or impact of a risk to below an 
acceptable threshold.  

Note: includes executing contingency plans when a risk metric crosses a 
predetermined threshold (when a risk factor becomes a problem)  

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2) (A Guide to the Project 
Management Body of Knowledge 
(PMBOK® Guide)—Fourth Edition) 

Root Cause Analysis (1) An analytical technique used to determine the basic underlying reason that 
causes a variance, defect, or risk. 

(2) Determination of a potential problem’s underlying cause or causes. 

(1) (A Guide to the Project 
Management Body of Knowledge 
(PMBOK® Guide)—Fourth Edition)  

(2)  (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

Scrum An iterative, incremental framework for project management often seen in agile 
software development. 

Wikipedia 

Simulation (1) A model that behaves or operates like a given system when provided a set of 
controlled inputs. 

(2) The process of developing or using a model as in (1).  

(3) The use of a data processing system to represent selected behavioral 
characteristics of a physical or abstract system.  

(1) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

(3) (ISO/IEC 2382-1:1993 
Information technology—
Vocabulary—Part 1: Fundamental 
terms, 01.06.01)  

Software 
Architecture 

The software architecture of a program or computer system is the structure or 
structures of the system, which comprise software components, the externally visible 
properties of those components, and the relationships among them. 

[Extracted from Use of Quality 
Attribute Workshops (QAWs) in 
Source Selection for a DoD System 
Acquisition: A Case Study, John K. 
Bergey and William G. Wood, June 
2002] 



 

107 

Term Definition Source 

Software 
Architecture 
Description 

The software architecture of the system is the set of structures needed to reason 
about the system which comprise software elements, the relations among them and 
the properties of both. Documenting software architecture facilitates communications 
between stakeholders, documents early decisions about high level design, and 
allows reuse of design components and patterns between programs. 

Wikipedia 

Software 
Architecture Views  

Software architecture is commonly organized in views, which are analogous to the 
different types of blueprints made in building architecture. A view is a representation 
of a set of system components and relationships among them. Within the ontology 
established by ANSI/IEEE 1471-2000, views are responses to viewpoints, where a 
viewpoint is a specification that describes the architecture in question from the 
perspective of a given set of stakeholders and their concerns. The viewpoint 
specifies not only the concerns addressed but the presentation, model kinds used, 
conventions used and any consistency (correspondence) rules to keep a view 
consistent with other views. 

Wikipedia 

Software 
Configuration 
Management 

A discipline applying technical and administrative direction and surveillance over the 
life cycle of items to: 

(1) Identify and document the functional and physical characteristics of configuration 
items. 

(2) Control changes to configuration items and their related documentation. 

(3) Record and report information needed to manage configuration items effectively, 
including the status of proposed changes and implementation status of approved 
changes. 

(4) Audit configuration items to verify conformance to specifications, drawings, 
interface control documents, and other contract requirements. 

MIL-STD-973, Configuration 
Management, 17 April 1992 



 

108 

Term Definition Source 

Software Design 
Description  

The software design description presents the characteristics of one or more 
systems, subsystems, software items, or other system components, and their 
interfaces. It includes the following:  

a) Identification of external interfaces, software components, software units, and 
other interfaces. 

b) Allocation of software item requirements to software components, further refined, 
as needed, to facilitate detail design. 

c) Description of the items (systems, configuration items, users, hardware, software, 
etc.) that must communicate with other items to pass and receive data, instructions 
or information. 

d) The concept of execution including data flow and control flow. 

e) Security considerations. 

f) Reuse elements. 

g) Error handling. 

h) Identification of reference and protocol documents or specifications. 

ISO/IEC/IEEE 12207:2008  

Software 
Development Plan 

The development plan presents how the organization or program plans to conduct 
development activities (the software implementation strategy).  

ISO/IEC/IEEE 12207:2008  

Software 
Identification 

See configuration identification.   

Software Item (1) Source code, object code, control code, control data, or a collection of these 
items.  

(2) An aggregation of software, such as a computer program or database, that 
satisfies an end use function and is designated for specification, qualification testing, 
interfacing, configuration management, or other purposes.  

(1) (ISO/IEC 12207:2008 Systems 
and software engineering--Software 
life cycle processes, 4.41) 

(2) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

Software Life Cycle 
Model 

A software life cycle model is a structure imposed on the development of a software 
product. There are several models for such processes, each describing approaches 
to a variety of tasks or activities that take place during the process. See Section 2 for 
software development models discussed in this document. 

Adapted from Wikipedia 

Software Peer 
Review(s) 

A type of software evaluation in which a work product (document, code, or other) is 
examined by its author and one or more colleagues, in order to evaluate its technical 
content and quality. 

Wikipedia 



 

109 

Term Definition Source 

Software Problem A bug, error, flaw, mistake, failure, or fault in a computer program or system that 
produces an incorrect or unexpected result, or causes it to behave in unintended 
ways.  

Wikipedia 

Software process 
Evaluation 

Software process evaluations are performed for two purposes:  

1) To determine the quality of the software development processes of the program. 
These software process evaluations are performed by a team of software 
professionals independent of the developers of the processes.  

2) To determine the adherence of the software developers to the defined processes. 
These software development evaluations are performed by a team of software 
professionals independent of the software developers. 

R. Fulford/ L. Holloway 

Software Product 
Evaluation 

An evaluation of a software product by persons other than the author with different 
levels of required formality, documentation, and stakeholders.  

For example: peer reviews, inspections, or walkthroughs. 

R. Fulford 

Software Quality 
Assurance 

A planned and systematic approach to the evaluation of the quality of and 
adherence to software product standards, processes, and procedures. This includes 
the process of assuring that standards and procedures are established and are 
followed throughout the software life cycle. Compliance with agreed-upon standards 
and procedures is evaluated through process monitoring, product evaluation, and 
audits.  

http://satc.gsfc.nasa.gov/assure/agb
sec3.txt 

Software Team 
Member 

An individual that performs software activities, including developers, testers, 
software configuration managers, and software quality assurance. 

R. Fulford 

Software Test 
Environment 

The facilities, hardware, software, firmware, procedures, and documentation needed 
to perform qualification or other testing of software  

Note: Elements may include but are not limited to simulators, code analyzers, test 
case generators, and path analyzers, and may also include elements used in the 
software engineering environment. 

(ISO/IEC 24765:2009 Systems and 
software engineering vocabulary)  

Software Thread See Thread.   

Software Under Test The portion of software that is to be exercised by test verification activities. This 
could represent an entire CSCI, or only a piece of it. 

R. Fulford 



 

110 

Term Definition Source 

Source Code (1) Text written in a computer programming language. Such a language is specially 
designed to facilitate the work of computer programmers, who specify the actions to 
be performed by a computer mostly by writing source code, which can then be 
automatically translated to binary machine code that the computer can directly read 
and execute. 

(2) Computer instructions and data definitions expressed in a form suitable for input 
to an assembler, compiler, or other translator. 

(1) Wikipedia 

(2) ISO/IEC 24765:2009 Systems 
and software engineering vocabulary 

Specialty 
Engineering 

Domains that are not typical of the main engineering effort. Hardware engineering 
and software engineering may be used as major elements in a majority of systems 
engineering efforts and therefore are not viewed as “special”. Engineering domains 
such as electromagnetic interference, electrical grounding, safety, security, electrical 
power filtering/uninterruptible supply, reliability/maintainability/availability, human 
systems integration, and environmental engineering may be included in systems 
engineering efforts where they have been identified to address special system 
implementations. They are then viewed as “specialty engineering.” 

adapted from Wikipedia 

Specification (1) A detailed formulation, in document form, which provides a definitive description 
of a system for the purpose of developing or validating the system. 

(2) A document that fully describes a design element or its interfaces in terms of 
requirements (functional, performance, constraints, and design characteristics) and 
the qualification conditions and procedures for each requirement.  

(3) A document that specifies, in a complete, precise, verifiable manner, the 
requirements, design, behavior, or other characteristics of a system, component, 
product, result, or service and, often, the procedures for determining whether these 
provisions have been satisfied. Examples are: requirement specification, design 
specification, product specification, and test specification. 

(1) ISO/IEC 2382-20:1990 
Information technology—
Vocabulary—Part 20: System 
development, 20.01.03 

(2) IEEE 1220-2005 IEEE Standard 
for the Application and Management 
of the Systems Engineering Process, 
3.1.28 

(3) A Guide to the Project 
Management Body of Knowledge 
(PMBOK® Guide)—Fourth Edition 

Specification Tree (1) A diagram that depicts all of the specifications for a given system and shows their 
relationships to one another.  

(2) A hierarchy of specification elements and their interface specifications that 
identify the elements and the specifications related to design elements of the system 
configuration that are to be controlled.  

(1) ISO/IEC 24765:2009 Systems 
and software engineering vocabulary 

(2) IEEE 1220-2005 IEEE Standard 
for the Application and Management 
of the Systems Engineering Process, 
3.1.29 



 

111 

Term Definition Source 

Stakeholder (1) Individual or organization having a right, share, claim, or interest in a system or in 
its possession of characteristics that meet their needs and expectations.  

(2) Individual, group or organization that can affect, be affected by, or perceive itself 
to be affected by, a risk.  

(3) Individual, group, or organization who may affect, be affected by, or perceive 
itself to be affected by a decision or activity.  

(4) Person or organization (e.g., customer, sponsor, performing organization, or the 
public) that is actively involved in the project, or whose interests may be positively or 
negatively affected by execution or completion of the project. A stakeholder may 
also exert influence over the project and its deliverables.  

Note: The decision-maker is also a stakeholder. 

(1) ISO/IEC 12207:2008 Systems 
and software engineering--Software 
life cycle processes, 4.45; ISO/IEC 
15288:2008 Systems and software 
engineering--System life cycle 
processes, 4.29; ISO/IEC 
15939:2007 Systems and software 
engineering--Measurement process, 
3.37 

(2) ISO/IEC 16085:2006 Systems 
and software engineering--Life cycle 
processes--Risk management, 

3.19 

(3) ISO/IEC 38500:2008 Corporate 
governance of information 
technology, 1.6.16 

 (4) A Guide to the Project 
Management Body of Knowledge 
(PMBOK® Guide) -- Fourth Edition 

Standards As used in this document, commercial, government, or organizational standard (e.g., 
IEEE, ISO, company policies, military standards). Distinguish from the term 
standards and practices. 

G. Whittaker 

Standards and 
Practices 

Detailed work instructions that the development team follows in conducting their 
daily activities (e.g., programmer’s style guide, check-in/check-out procedures, 
architectural design patterns). Distinguish from the term standard. 

 G. Whittaker 

Static Analysis The process of evaluating a system or component based on its form, structure, 
content, or documentation. 

ISO/IEC 24765:2009 Systems and 
software engineering vocabulary 

Stress Scenarios Tests with the objective to verify the robustness of the software by testing beyond 
the limits of normal operation. Such tests commonly put a greater emphasis on 
availability and error handling under a heavy load. 

Wikipedia 



 

112 

Term Definition Source 

System A composite, at any level of complexity, of personnel, procedures, materials, tools, 
equipment, facilities and software. The elements of this composite entity are used 
together in the intended operation or support environment, to perform a given task or 
achieve a specific production, support or mission requirement.  

MIL-STD-882 

System Architecture 
Views 

See Architecture Viewpoints.   

System Scenarios Narrative describing foreseeable interactions of types of users (characters) and the 
system. Scenarios include information about goals, expectations, motivations, 
actions and reactions. Scenarios are neither predictions nor forecasts, but rather 
attempts to reflect on or portray the way in which a system is used in the context of 
daily activity. 

Scenarios are frequently used as part of the systems development process. 
Scenarios are written in plain language, with minimal technical details, so that 
stakeholders (designers, usability specialists, programmers, engineers, managers, 
marketing specialists, etc.) can have a common example which can focus their 
discussions. 

Increasingly, scenarios are used directly to define the wanted behavior of software: 
replacing or supplementing traditional functional requirements. 

Adapted from Wikipedia 

System Testing System testing of software or hardware is testing conducted on a complete, 
integrated system to evaluate the system’s compliance with its specified 
requirements. System testing falls within the scope of black box testing, and as 
such, should require no knowledge of the inner design of the code or logic.  

As a rule, system testing takes, as its input, all of the “integrated” software 
components that have successfully passed integration testing and also the software 
system itself integrated with any applicable hardware system(s). The purpose of 
integration testing is to detect any inconsistencies between the software units that 
are integrated together (called assemblages) or between any of the assemblages 
and the hardware. System testing is a more limited type of testing; it seeks to detect 
defects both within the “inter-assemblages” and also within the system as a whole. 

Wikipedia 

Systems/Software 
Trade Studies 

See Trade Study. G. Whittaker 



 

113 

Term Definition Source 

Technical 
Performance 
Measure (TPM) 

(1) A key indicator of progress, parameter, or a metric that can be used to monitor 
the progress or performance of selected requirements. A technical performance 
measure is monitored to ensure that it remains within tolerances as an indication of 
the progress of the design.  

(2) A measurement that indicates progress toward meeting critical system 
characteristics (technical parameters) that are specified in requirements or 
constrained by system design. Technical parameters that are tracked with TPMs 
have clearly identifiable and measureable target and threshold values. Examples of 
technical parameters, which can be tracked using TPMs are space vehicle weight, 
space vehicle power, and computer system resource margins (e.g., CPU, I/O, 
memory margins). 

(1) 
http://www.argospress.com/Resourc
es/systems-
engineering/technizperfomeasu.htm 

(2) Software Development Standard 
for Space Systems TOR-
2004(3909)-3537 Rev. B, p12. 

Technical Software 
Risk Database Items 

Database records containing descriptive details of technical software risks. G. Whittaker 

Test Anomalies (1) A test condition that deviates from expectations, based on requirements 
specifications, design documents, user documents, or standards, or from someone’s 
perceptions or experiences. 

(2) Anything observed in the test operation of software or system that deviates from 
expectations based on previously verified software products, reference documents, 
or other sources of indicative behavior. 

(1) Adapted from (IEEE 1028-2008 
IEEE Standard for Software Reviews 
and Audits, 3.1).  

(2) Adapted from (IEEE 829-2008 
IEEE Standard for Software and 
System Test Documentation, 3.1.4). 

Test Case (1) A set of test inputs, execution conditions, and expected results developed for a 
particular objective, such as to exercise a particular program path, software thread 
or scenario or to verify compliance with a specific requirement.  

(2) Documentation specifying inputs, predicted results, and a set of execution 
conditions for a test item.  

(1 - 2) Adapted from IEEE 1012-
2004 IEEE Standard for Software 
Verification and Validation, 3.1.31. 

Test Documentation Documentation of the test plans, RVTM, test procedures, test cases, scenarios, and 
witnessed test results. 

G. Whittaker 

Test Environment Hardware, software, and data configuration necessary to conduct the test case. Adapted from ISO/IEC 25051:2006 
Software engineering -- Software 
product Quality Requirements and 
Evaluation (SQuaRE)—
Requirements for quality of 
Commercial Off-The-Shelf (COTS) 
software product and instructions for 
testing, 4.8 



 

114 

Term Definition Source 

Test Like You Fly (1) TLYF is a pre-launch verification and validation approach that examines all 
applicable mission and flight characteristics within the intended operational 
environment and determines the fullest practical extent to which those 
characteristics can be applied in testing. The application of this philosophy is 
intended to avoid experiencing anomalous behavior for the first time on orbit and to 
validate end-to-end operability and performance of the item under test.  

(2) “Test Like You Fly” is a term that has progressed from being an undefined notion 
to an assessment and implementation process. Although “test” is included in its title, 
it is more than just a test approach—it is an acquisition and systems engineering 
process and a mission assurance and validation tool. 

(1) Adapted from ‘Space Vehicle 
Checklist For Assuring Adherence 
To “Test-Like-You-Fly” Principles’, 
TOR-2009(8591)-15, 30 June 2009, 
Frank L. Knight. 

(2) GSAW 2010 Tutorial A: Test Like 
You Fly (TLYF), Julia White, Lindsay 
Tilney; The Aerospace Corporation 

Test Plan (1) A plan describing the scope, approach, resources, and schedule of intended test 
activities. 

(2) A plan that describes the technical and management approach to be followed for 
testing a system or component.  

(3) A plan that establishes detailed requirements, criteria, general methodology, 
responsibilities, and general planning for test and evaluation of a system.  

Note: It identifies test items, the features to be tested, the testing tasks, who will do 
each task, and any risks requiring contingency planning. Typical contents identify the 
items to be tested, tasks to be performed, responsibilities, schedules, and required 
resources for the testing activity. 

(1 - 2 ) Adapted from IEEE 1012-
2004 IEEE Standard for Software 
Verification and Validation, 3.1.33  

(3) ISO/IEC 2382-20:1990 
Information technology--Vocabulary--
Part 20: System development, 
20.06.09 

Test Procedures (1) Detailed instructions for the setup, execution, and evaluation of results for a 
given test case. These instructions may be automated. 

(2) A document containing a set of associated instructions as in (1).  

(1 -2) IEEE 1012-2004 IEEE 
Standard for Software Verification 
and Validation, 3.1.34  

Testability (1) Extent to which an objective and feasible test can be designed to determine 
whether a requirement is met.  

(2) The degree to which a requirement is stated in terms that permit establishment of 
test criteria and performance of tests to determine whether those criteria have been 
met.  

(3) The degree to which a system or component facilitates the establishment of test 
criteria and the performance of tests to determine whether those criteria have been 
met.  

(1) ISO/IEC 12207:2008 Systems 
and software engineering--Software 
life cycle processes, 4.52 

(2) IEEE 1233-1998 (R2002) IEEE 
Guide for Developing System 
Requirements Specifications, 3.18 

(3) ISO/IEC 24765:2009 Systems 
and software engineering vocabulary 



 

115 

Term Definition Source 

Thread As used in this document, identifiable operationally useful function that is individually 
testable. Each thread is associated with specific hardware or software components 
that implement its function and is defined by a stimulus and response. Software 
threads are derived from system threads, scenarios, or communication patterns. 

Adapted from Michael S. Deutch, 
Software Verification and Validation, 
Prentiss-Hall, 1982, pg 321 

Traceability (1) Degree to which a relationship can be established between two or more products 
of the development process, especially products having a predecessor-successor or 
master-subordinate relationship to one another. 

(2) The identification and documentation of derivation paths (upward) and allocation 
or flow down paths (downward) of work products in the work product hierarchy.  

(3) Discernable association among two or more logical entities, such as 
requirements, system elements, verifications, or tasks.  

Example: the degree to which the requirements and design of a given system 
element match. 

(4) Bidirectional association among two or more logical entities that is discernable in 
either direction (to and from an entity). 

(1) (IEEE 1233-1998 (R2002) IEEE 
Guide for Developing System 
Requirements Specifications, 3.19) 

(2) (IEEE 1362-1998 (R2007) IEEE 
Guide for Information Technology-
System Definition -Concept of 
Operation Document, 3.24)  

(3–4) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary)  

Trade Study Evaluation of alternatives, based on criteria and systematic analysis, to select the 
best alternative for attaining determined objectives. 

 (ISO/IEC 24765:2009 Systems and 
software engineering vocabulary)  

Unit Test (1) Testing of individual routines and modules by the developer or an independent 
tester. 

(2) A test of individual programs or modules in order to ensure that there are no 
analysis or programming errors.  

(3) Test of individual hardware or software units or groups of related units.  

(1)  (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

(2) (ISO/IEC 2382-20:1990 
Information technology—
Vocabulary—Part 20: System 
development, 20.05.05) 

(3) (ISO/IEC 24765:2009 Systems 
and software engineering 
vocabulary) 

Use Case A use case in software engineering and systems engineering is a description of a 
system’s behavior as it responds to a request that originates from outside of that 
system. In other words, a use case describes “who” can do “what” with the system in 
question. The use case technique is used to capture a system’s behavioral 
requirements by detailing scenario-driven threads through the functional 
requirements. 

https://www.thedacs.com/databases/
url/key/5086/5164 



 

116 

Term Definition Source 

User (1) The ultimate operator of a piece of software or a system. 

(2) For the purposes of this guide, users include operators of the system in addition 
to the end users of the data produced by the system. 

(1) Adapted from Wikipedia  

(2) Software Development Standard 
for Space Systems TOR-
2004(3909)-3537 Rev. B, p12. 

Validation (1) The process of providing evidence that the software and its associated products 
satisfy system requirements allocated to software at the end of each life cycle 
activity, solve the right problem, and satisfy intended use and user needs. 

(2) The assurance that a product, service, or system meets the needs of the 
customer and other identified stakeholders. It often involves acceptance and 
suitability with external customers.  

(1) (IEEE 1012-2004 IEEE Standard 
for Software Verification and 
Validation, 3.1.35)  

(2) (A Guide to the Project 
Management Body of Knowledge 
(PMBOK® Guide)—Fourth Edition)  

Verification (1) The evaluation of whether or not a product, service, or system complies with a 
regulation, requirement, specification, or imposed condition. 

(2) Process of providing objective evidence that the software and its associated 
products comply with requirements (e.g., for correctness, completeness, 
consistency, and accuracy) for all life cycle activities during each life cycle process 
(acquisition, supply, development, operation, and maintenance), satisfy standards, 
practices, and conventions during life cycle processes, and successfully complete 
each life cycle activity and satisfy all the criteria for initiating succeeding life cycle 
activities (e.g., building the software correctly).  

(1) (A Guide to the Project 
Management Body of Knowledge 
(PMBOK® Guide)—Fourth Edition) 

(2) (IEEE 829-2008 IEEE Standard 
for Software and System Test 
Documentation, 3.1.54) 

Verification 
Databases 

Databases containing test data used for verification of requirements. G. Whittaker 

Verification 
Environments 

The hardware and software hosting and supporting the verification of software 
products. Usually intended to simulate or emulate the target environment in various 
degrees of operational stress, the verification environment also includes extended 
simulation tools, drivers, and data as necessary.  

See also: Software Test Environment, Test Environment. 

G. Whittaker 

Verification Method Standard methods for verification are inspection, analysis, demonstration, and test. Software Development Standard for 
Space Systems TOR-2004(3909)-
3537 Rev. B, p12. 



 

117 

Term Definition Source 

Verification Plans The methods used for verification, such as analysis, demonstration, inspection, and 
testing of the products and the processes that produce the products. Usually 
documented in a test plan. 

Adapted from ISO/IEC JTC 1/SC 7 
2010-12-22, ISO/IEC FDIS 
15289:2010(E) Software and 
Systems Engineering - Content of 
life-cycle information products 
(documentation), item g. 

Verification Report The verification report provides the results and conclusions of verification on a 
software item, system, or subsystem. It enables the acquirer to assess the 
verification and its results. It includes system identification and overview, verification 
requirements and criteria, overview of results, identification of items verified and 
dates of verification, detailed results, problems encountered, and rationale for 
decisions. 

ISO/IEC/IEEE 15288:2008 
reference: 6.4.6.3b and 
ISO/IEC/IEEE 12207:2008 
reference: 7.2.4.3.1.5 as referenced 
in ISO/IEC FDIS 15289:2010(E) 
Draft 

Waiver A written authorization to accept a configuration item or other designated item which, 
during production or after having been submitted for inspection, is found to depart 
from specified requirements, but is nevertheless considered suitable for use as is or 
after rework by an approved method. 

(ISO/IEC 24765:2009 Systems and 
software engineering vocabulary)  

 


