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Abstract 

The space enterprise is rapidly changing - presenting challenges to the Department of Defense, civil and 
commercial agencies, and ultimately to the Aerospace Corporation as the premiere provider of space 
enterprise mission assurance. A rapidly growing need for smaller more affordable space missions is 
testing how Aerospace executes its mission assurance function. As a corporation, we are facing direction 
to execute many of our missions in two- to three-year time frames, with an increased acceptance of risk 
and “good enough” performance. Commensurately, there is an increased demand for a mission assurance 
approach that can deliver best effort within constrained resources and shortened schedules, gracefully 
accept the resulting risk, and still achieve enough system performance to meet mission objectives or 
success criteria. The Aerospace Space Innovation Directorate (SID) has, for two decades, practiced a 
unique approach to mission assurance that can respond to this need.  

SID has an excellent track record of success with a framework that has evolved over time and is 
historically anchored in the traditional Aerospace methodologies. Budget and schedule constraints have 
traditionally challenged the SID team to, by necessity, adopt a more tailored approach. These practices 
have continued to evolve with our customers’ pursuit of smaller, more affordable, risk tolerant missions. 
Despite programmatic limitations, this approach has delivered a greater than 95% success rate for these 
sorts of missions while using 2-3 STE of Aerospace support per mission per year. SID has recently begun 
to document this capability, calling it a “Class Agnostic Mission Assurance Approach for Constraints-
Driven Missions.” 
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1. Introduction 

1.1 Background 

SID has supported more than two dozen missions over the last 20 years servicing the USAF Space Test 
Program (STP), the Air Force Research Laboratory (AFRL), the Space Rapid Capabilities Office 
(SpRCO; formerly known as the Operationally Responsive Space office), and other national and civil 
agencies. In supporting these programs, SID has developed a unique brand of mission assurance for 
missions ranging from CubeSats to multi-manifest missions flying on Medium and Heavy launch 
vehicles. Figure 1-1 is a sampling of SID supported missions showing the wide variety of partners over a 
dozen different launch vehicles at multiple launch sites. This has included mission assurance for payload 
and bus developments as well as their integration to launch systems. Since 2000, SID has delivered 
greater than 95% mission success for these smaller risk tolerant missions within highly constrained 
budgets and schedule, using 2-3 Aerospace STE per year per mission (not including the STE required for 
Aerospace launch vehicle mission assurance for the NSSL launch vehicles used). 

 
Figure 1-1.  Two decades of SID mission support. 

During this time, SID has evolved and refined its mission assurance approach. There is no “secret sauce,” 
but there is a thoughtful approach requiring something of a shift in mindset. Although SID’s approach is 
ideal for risk-tolerant (traditionally Risk Class C or D) missions constrained by budget, schedule and 
other resources, there is value in employing this mindset for Class A and B missions as well. Essentially, 
the SID approach addresses mission assurance from a system engineering point of view and an agile 

Year Mission Launch Vehicle Launch Site Type

2000

JAWSAT
MTI

TSX-5
MightySat II.1

Minotaur I
Taurus

Pegasus
Minotaur I

Vandenburg
Vandenburg
Vandenburg
Vandenburg

Launch Integ
Launch Integ
Launch Integ
Launch Integ

2001 Kodiac Star Athena I Kodiac Launch Integ

2002

2003 Coriolis Titan II Vandenburg Launch Integ

2004 UNSat-2 Delta IV Heavy Cape Canaveral Launch Integ

2005
XSS-11
STP-R1

Minotaur I
Minotaur I

Vandenburg
Vandenburg

Launch Integ
Launch Integ

2006
COSMIC-1

STP-H2
Mintoraur I

Shuttle
Vandenburg

Kennedy
Launch Integ
Launch Integ

2007
STP-1

STPSat-1
Atlas V

"
Cape Canaveral

"
Launch Integ

Bus Dev & Integ

2008 C/NOFS Pegasus Kwajlien Launch Integ

2009 HICO / RAIDS HTV Japan Bus & Launch Integ

2010
STPSat-2
STP-S26

Minotaur IV
"

Kodiac
"

Bus & Launch Integ
Bus & Launch Integ

2011 ORS-1 Minotaur I Wallops Bus & Launch Integ

2012

2013
ORS-3

STPSat-3
STP-H4

Minotaur I
"

HTV

Wallops
"

Japan

Bus & Launch Integ
Bus & Launch Integ

Launch Integ

2014 Angels Delta IV Cape Canaveral Bus & Launch Integ
2015 DSCOVR Falcon 9 Cape Canaveral Launch Integ
2016

2017
ORS-5
STP-H5

ASETS-II

Minotaur IV
Falcon 9

X-37

Cape Canaveral
Kennedy

Cape Canaveral

Bus & Launch Integ
Launch Integ

Bus & Launch Integ

2018
EAGLE

STPSat-5
Atlas V

Falcon 9
Cape Canaveral

Vandenburg
Bus & Launch Integ
Bus & Launch Integ

2019
STP-2 (24 SVs)

STP-H6
Falcon Heavy
Falcon 9 / ISS

Cape Canaveral
Cape Canaveral

Bus & Launch Integ
Launch Integ

2020 STPSat-4 Antares / ISS Wallops Bus & Launch Integ
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mindset that begins with the question “what is it that we are actually trying to do?” The answer to this 
question is the cornerstone of the whole process upon which subsequent analyses and decisions are made. 
The approach also calls for highly seasoned systems engineering skills drawing upon lessons learned 
which is why it is augmented with an active lesson learned program and an “apprenticeship” program to 
build good, efficient, program office systems engineers, thus deepening the bench essential for continuing 
and expanding capability.  

1.2 Organization of TOR 

This TOR begins by exploring the Agile mindset and the concept of requirements versus constraints-
driven mission. It then describes how the Class Agnostic Mission Assurance approach borrows Agile 
concepts for employing mission assurance in uncertain, constraints-driven development environments. 
Finally, it provides a full description of the Agile Class Agnostic Mission Assurance approach for 
extension to any mission assurance application across any risk class. 
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2. Key Concepts 

2.1 Introduction 

The traditional Class A, B, C, and D mission risk classification scheme can be a useful tool for 
communicating the risk posture of a mission to stakeholders and bidders, but it does suffer shortcomings. 
All too often, these classifications are used as a kind of shorthand for the fiscal realities of the mission 
rather than a true risk posture. They tend to be monolithic, glossing over the fact that a single satellite 
mission can have a mixture of risk levels – one subsystem can require Class A attention, while for another 
more robust or less critical subsystem, Class D might be acceptable. Furthermore, once a risk class 
designation is established, there is typically little to no linkage of that risk posture with the specifics of 
program execution – there is little guidance given on which risks to mitigate or to accept given the 
program’s resource constraints. The traditional class designation also ignores whether requirements or the 
constraints drive the mission, and typically isn’t flexible to the changing priorities encountered during 
program execution.  

The Space Innovation Directorate has spent a lot of time developing and refining its class agnostic 
mission assurance model for those missions that do not clearly fit into any one traditional Class A to D 
construct. In refining this concept, there was a recent recognition of similarities between the SID 
approach to mission assurance and the Agile Software Development movement. This section briefly 
reviews Agile concepts drawing analogies between the Agile mindset and that of class agnostic mission 
assurance. It also attempts to highlight Agile practices that are relevant to mission assurance. 

2.2 Agile Mindset and Manifesto 

Agile as we know it today was formalized in the early 2000s as a set of principles and mindsets for better 
software development. On its website, the Agile Alliance describes Agile as “the ability to create and 
respond to change. It is a way of dealing with, and ultimately succeeding in, an uncertain and turbulent 
environment.” (Agile Alliance, n.d.) Agile software development is an umbrella term for a set of 
frameworks and practices based on the values and principles expressed in the Manifesto for Agile 
Software Development and the 12 Principles behind it. Figure 2-1 shows the Agile Manifesto as 
described by the Agile Alliance website (Agile Alliance, n.d.). 

 
Figure 2-1.  The Agile Manifesto. 
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The 12 implementing principles behind the Agile Manifesto can also be found on the Agile Alliance 
website, and include such statements as: 

• Businesspeople and developers must work together daily throughout the project. 

• The most efficient and effective method of conveying information to and within a development 
team is face-to-face conversation. 

• Continuous attention to technical excellence and good design enhances agility. 

• Simplicity–the art of maximizing the amount of work not done–is essential. 

• At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its 
behavior accordingly. 

Agile is “really about thinking through how you can understand what’s going on in the environment that 
you’re in today, identify what uncertainty you’re facing, and figure out how you can adapt to that as you 
go along.” All of these principles can be applied to Mission Assurance. As it says on the Agile Alliance 
website, “when you think of Agile as a mindset, that mindset can be applied to other activities.” (Agile 
Alliance, n.d.) 

2.3 Agile Mindset for Mission Assurance 

Class Agnostic Mission Assurance requires much of the same mindset as Agile. Our version of the Agile 
Manifesto for Mission Assurance is shown in Figure 2-2. 

 
Figure 2-2.  Agile Mission Assurance Manifesto. 

Scott Ambler of the Agile Alliance further explains the Agile Manifesto for Agile Software developments 
as listed below. (Ambler, n.d.) The authors of this paper include analogies (also listed below) for 
describing a similar manifesto for agile mission assurance. 

Agile Software: Tools and processes are important, but it is more important to have competent people 
working together effectively.  

Agile Mission Assurance: Mission assurance tools and processes are important, but it is more important 
to have competent people working together effectively. 
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Agile Software: Good documentation is useful in helping people to understand how the software is built 
and how to use it, but the main point of development is to create software, not documentation.  

Agile Mission Assurance: Good documentation is important in helping people understand risk and risk 
mitigation, but the main point of mission assurance is to improve the chance of mission success, not to 
document risks. 

Agile Software: A contract is important but is no substitute for working closely with customers to 
discover what they need.  

Agile Mission Assurance: Requirements lists and CDRLs are important but are no substitute for working 
closely with all partners to discover what the mission needs to do, and how best to help it succeed.  

Agile Software: A project plan is important, but it must not be too rigid to accommodate changes in 
technology or the environment, stakeholders' priorities, and people's understanding of the problem and its 
solution. 

Agile Mission Assurance: A mission assurance plan is important, but it must not be too rigid to 
accommodate changes in priorities, resources, risk, and people's understanding of the mission’s 
objectives. 

2.4 Requirements-Driven and Constraints-Driven Missions 

SID’s agile class agnostic approach also recognizes that missions are typically either requirements-driven, 
or constraints-driven. When push comes to shove, missions will either let the requirements drive cost and 
schedule (adding money and time to meet requirements), or missions will let cost and schedule drive 
requirements (reducing scope to meet a fixed budget or schedule). The distinction between requirements-
driven and constraints-driven missions was first articulated as part of a paper at the 2018 Conference on 
Small Satellites (Jasper et al., 2018), and later refined in an Institute of Electrical and Electronics 
Engineers (IEEE) paper (Jasper et al., 2020). 

Requirements-driven missions are focused on mission system performance with less emphasis on how 
that drives budget and schedule. 

A Requirements-Driven Mission is: 

A mission where mission objectives / requirements drive the schedule and budget and 
where objectives are typically prioritized over schedule and budget (Jasper et al., 2020, 
p. 2) 

This is not to say that requirements-driven missions do not need to apply due diligence with respect to 
cost and schedule, but cost and schedule are typically less constrained (e.g., externally constrained launch 
dates or budget figures) and achieving mission requirements is the focus. Requirements-driven missions 
have more flexibility for delaying a launch or adding funding to ensure all mission requirements are met. 
These missions also require a full complement of mission assurance for ensuring the highest probability 
of successful system performance. 

In contrast, constraints-driven missions are highly focused on achieving, within externally constrained 
budgets and schedule, good enough performance that still satisfies mission objectives. 
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A Constraints-Driven Mission is: 

A mission where schedule and budget are equal to, or prioritized above, the 
objectives/scope. The objectives/scope are traded with, or bounded by, schedule and 
budget and all three may evolve as the system is defined, designed, tested and operated. 
(Jasper et al., 2020, p. 2) 

Constraints-driven missions have little to no flexibility for delaying a launch or adding funding to resolve 
issues that arise. Such missions risk cancellation if they exceed their budget, or risk missing their launch 
if they exceed schedule. Cost and schedule are the most common constraints, but others may exist as well. 
For example, there are significant volume and design constraints associated with the CubeSat form factor. 
“Common bus” or standardized-architecture implementations represent another type of constraint that 
will likely increase in importance as more programs embrace a production mindset. Standardization 
requires compromise, and if stakeholders wish to prioritize adherence to a standard interface, they must 
allow developers the freedom to trade functionality or performance requirements if needed to fit that 
standard.  

For constraints-driven missions, it may be necessary to reduce technical performance and/or accept 
increased risk to meet program constraints. Such missions must also acknowledge that something less 
than full mission success (even failure) is possible. Therefore, constraints-driven missions must 
continually adjust their scope of activity to fit schedule, budget, and resource constraints when addressing 
emerging risks. In other words, a constraints-driven mission will stay “within the box,” while a 
requirements-driven mission has the freedom to “build its own box.” 

It is essential for the mission team and supported stakeholders to decide if a mission is requirements-
driven or constraints-driven, since this will drive programmatic decisions and trades throughout the 
mission development. Figure 2-3 shows a spectrum of constraints vs. requirements driven missions with 
some examples that may help guide the decision. 
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Figure 2-3.  Spectrum of Mission Assurance for Constraints and Requirements-driven missions. 

2.5 Key Mission Attributes and Concepts 

The class agnostic framework is rooted in Agile concepts, and these concepts are applicable to any 
mission of any size. However, the class agnostic methodology is most applicable to missions with some 
or all the following attributes.  

• Missions that are partly or mostly constraints-driven. The class agnostic heuristic can apply to 
both constraints-driven and requirements-driven missions, but it is most effective where missions 
are willing to trade requirements and risk to remain within cost, schedule, or other constraints.  

• Missions with small program offices. One of the major tenets of Agile is that it requires small, 
high-performing teams working closely together. In large program offices with many 
organizational layers, the sheer size and complexity of the program and its staffing profile makes 
close communication and coordination difficult. Such missions typically also have the budget to 
conduct a full independent mission assurance effort, and class agnostic mission assurance may be 
less appropriate. 

• Missions for which less than 100% mission success is an option. A critical launch is a good 
example of a mission with very few options for less than 100% mission success – it either makes 
it to orbit, or it doesn’t. The heuristic can be applied to missions for which full mission success is 
the only metric that is “good enough,” but in that case it is very similar to traditional Class A 
mission assurance.  

Additionally, the class agnostic mission assurance approach relies on several key concepts.  

• Mission assurance is anything that improves the chances of mission success. In constraints-driven 
missions, risk is often accepted to remain within program constraints, and a guarantee of mission 
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success is rarely possible. In this context, class agnostic mission assurance seeks to maximize, 
rather than guarantee, the chances of mission success within the available cost, schedule, and 
resource constraints.  

• Mission assurance is not the purview of any single organization. Everyone involved in the 
mission – the government program office along with its contractor, SETA, and Aerospace  
support – makes up the mission assurance function. In most applications of the class agnostic 
heuristic, mission assurance is the collective effort of the entire team, not one of independent 
oversight. Mission assurance need not be independent to be objective.  

• Efficient mission assurance requires mentorship. When mission assurance efforts are constrained 
by limited resources, engineers need to have good instincts, so they can spot the issues faster and 
exercise good judgement in prioritizing activities. Pairing novice engineers with more 
experienced engineers (like pairing an apprentice with a master) helps generate new seasoned 
engineers with the right instincts.  

• Class agnostic mission assurance tailors “up.” Traditional mission assurance approaches start 
with a “Class A” requirements-driven approach and tailor back. This is less appropriate for highly 
constrained missions, which start with the most basic “Do No Harm” level of mission assurance 
(Read et al., 2016) and then add on what is needed and desired by the stakeholders to reach the 
final risk posture approach. Starting at a “Class A” approach and tailoring back is not only 
extremely cumbersome for resource-constrained missions, it also provides no fallback position 
should program realities change.  

Appendix A discusses the typical characteristics of constraints-driven missions, and the evolution of the 
tailored mission assurance concepts in general, in more detail.  
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3. Class Agnostic Mission Assurance 

The Agile Class Agnostic Mission Assurance approach is a heuristic approach that focuses assurance 
efforts based on specific risks to mission objectives. As summarized above, it borrows concepts from 
agile software development to scale and manage mission assurance efforts according to the needs of the 
program. It accommodates changes in mission scope, risk posture, and priorities as the mission 
development evolves. 

The result is a more appropriate application of limited resources across the mission, and a more realistic 
expectation of mission success that ultimately supports Certification of Flight Readiness (CoFR) at 
launch.  

Figure 3-1 illustrates the overall approach. A more detailed discussion of the steps to this approach 
follows. 

 
Figure 3-1.  Agile Class Agnostic Mission Assurance Approach. 

3.1 Step 1: Establish the “Knobs” of the Mission 

To successfully apply the class agnostic heuristic programs must understand not only the goals of the 
mission, but also the constraints (schedule, cost, resources, etc.), and the relationship between them. This 
includes not only developing an idea of what minimum mission success might look like, but whether the 
scope of the mission matches this vision, and what level of risk the program is willing to accept, at least 
initially.  
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3.1.1 Establish Mission Objectives 

The first step is to explore the mission's objectives. On some programs the objectives might be obvious at 
inception, but on other programs, the situation might be more subtle (or opinions might differ between 
stakeholders and developers). Many methods for defining and communicating the mission scope are 
viable; options might include one, or multiple, of the following: metric-based initial success criteria, 
minimum viable product (i.e., the minimum capability the spacecraft could fly with), use-case and user-
story creation, requirements definition and derivation, or experiment plan and concept of operations.  

As an example, the STPSat-1 mission team developed a very concise and specific list of minimum, 
nominal, and goal objectives, as follows: 

• Minimum mission success: 

- Take at least four SHIMMER data collects and download the associated data with a data 
quality of 99.5%. 

- Perform at least 60 hours (not required to be consecutive) of CITRIS operations. 

• Nominal mission success: 

- Perform four SHIMMER data collects per day, for at least 300 days over the mission 
year.  Download all experiment data with a data quality of 99.5%. 

- Operate CITRIS continuously over the mission year.  Experience no more than 60 days (not 
consecutive) of lost experiment time. 

• Maximum mission success: 

- Perform eight SHIMMER data collects per day, for at least two years.  Download all 
experiment data with a data quality > 99.9% (this was actually achieved). 

- Operate CITRIS continuously for two years with no more than five lost days (close, but no 
cigar). 

Jasper, Braun, and Hunt provide another example – a risk-reduction mission for a high-speed 
communications system (HSCS) – which establishes the following objectives, in priority order (Jasper et 
al., 2020): 

1. Minimum: File transfer downlink. This is the primary use of the HSCS for the large mission 
2. File transfer uplink 
3. Full data rate for file transfers 
4. Command uplink through HSCS 
5. Communication established at multiple ground sites on orbit 
6. Goal (not in baseline): Telemetry downlink through HSCS 

The Air Force Research Laboratory has several similar examples of success criteria in their configuration 
processes (AFRL/RV, 2020). 

These examples capture the essence of the class agnostic concept of objectives: not so much a 
requirement list as a story or a set of statements about what the mission is supposed to do. The objectives 
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can include minimum, baseline, and goal criteria, but should be concise – ideally not more than one 
briefing chart. For constraints-driven missions, it can be particularly important to define what constitutes 
“minimum functionality” – i.e., what is “good enough” to launch? 

3.1.2 Understand Constraints 

Having identified the mission objectives, the team can now begin identifying the mission’s constraints, 
such as cost, schedule, resources, size, etc. These are usually straightforward to list, but harder to match 
appropriately to the mission scope. The team must make realistic assessments as to whether objectives 
and constraints match each other. Figure 3-2 (Bitten et al., 2013) and Figure 3-3 illustrate the risk incurred 
when stakeholders have lofty expectations for a heavily resource-constrained missions. A $1M CubeSat is 
unlikely to deliver the performance or reliability of a $100M larger satellite, and the program should not 
expect such miracles unless it is willing to pay for them. One of the major lessons learned from studies of 
CubeSats is to ensure that missions are scoped appropriately for the vision (Venturini, 2017). 

 
Figure 3-2.  System cost as a function of complexity (Bitten et al., 2013). 

 
Figure 3-3.  Notional risk when matching mission scope to constraints (Venturini, 2017). 
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3.1.3 Decide Whether Requirements or Constraints Drive the Mission 

Once the objectives and constraints of the mission are described, the program and its stakeholders should 
jointly decide whether the mission is predominantly requirements-driven or constraints-driven. As 
described earlier, a requirements-driven mission will prioritize meeting mission objectives over staying 
within cost and schedule (or other mission constraints), while a constraints-driven mission is willing to 
sacrifice objectives to stay within strict cost, schedule, or other limitations such as those imposed by the 
CubeSat form factor or other standard architectures.  

The requirements-driven / constraints-driven distinction is fundamental to successful communication 
among stakeholders and developers. Stakeholders and developers should agree up front on whether the 
mission is requirements-driven or constraints-driven, and this decision should be revisited often – and 
formally overturned if necessary. Too many missions claim to be constraints-driven when the initial 
budget is set but become more and more requirements-driven as launch approaches.  

3.1.4 Articulate an Initial Risk Posture 

Developers and stakeholders should jointly understand the initial risk posture of the mission. Risk can 
arise from objectives and constraints that do not match each other (as described in Section 3.1.2); it can be 
part an active decision to attempt something new and unproven; it can arise from programmatic decisions 
to trade assurance for some other desirable attribute (rapid development, spiral development, etc.); or it 
can simply be part of the team’s mindset. But it should be part of the entire team’s mindset since 
experience from past CubeSats (and small satellite missions) shows that stakeholders and developers will 
sometimes have different concepts of the risk posture of the mission. (Venturini et al., 2018) 

In the past, customers have used traditional Class A/B/C/D designations to denote risk tolerance 
categories and such designations can still be used (Johnson-Roth & Tosney, 2010). However, few 
missions truly fit within a single, neat risk category (i.e., all within Class A, B, C or D). For these 
missions, other methodologies allow tailoring of risk level by subsystem or specialty engineering. This 
approach allows missions to focus their mission assurance on areas of higher criticality, while accepting 
more risk in lower-criticality areas. Alternatively, it allows programs to pay more attention to areas that 
are less mature, and less attention to areas that have heritage (Taylor et al., 2019). Additionally, the 
traditional designations for the Class A/B/C/D risk posture paradigm may have a risk “floor” that is too 
high to reap the full benefits of low-cost, risk-tolerant missions. Recent work has provided a sub-class-D 
taxonomy that provides a useful vocabulary for stakeholders and developers to use when discussing risk 
posture for highly risk-tolerant missions. Figure 3-4 summarizes this taxonomy, and more details can be 
found in the referenced paper (Jasper et al., 2018). 
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Figure 3-4.  Risk taxonomy for small satellite missions (Jasper et al., 2018). 

Starting at the minimum level of functionality of Do No Harm (basically, accomplishing only the 
assurance required to comply with launch and safety requirements) and tailoring up can be particularly 
helpful for smaller, more risk-tolerant systems. These lower levels of assurance also provide a fallback 
position for when the risk “knob” needs to be turned in response to changing circumstances. 

Regardless of the specific label used, the overarching goal of the initial risk posture is to communicate, 
not to rigidly classify. The risk posture of the mission rarely stays fixed throughout a mission. Even 
requirements-driven missions are sometimes forced to accept risk, and it’s a common experience for 
developers to encounter missions that are constraints-driven at kickoff – but requirements-driven at 
Launch Readiness Review. Or as one of the authors famously stated, “everyone is willing to tolerate risk, 
but no one is willing to accept failure.” 

3.1.5 The “Knobs” Are Not Fixed 

The items described above in sections 3.1.2 through 3.1.3 – loosely categorized as technical requirements, 
risk posture, cost constraints, and schedule constraints – represent “knobs” for mission execution (See 
Figure 3-5). Depending on the mission objectives and constraints, each of these “knobs” may be fixed or 
variable – stakeholders may be more willing to adjust cost and schedule to meet requirements or may be 
more willing to relax requirements and accept risk to meet cost and schedule. The settings may also 
change during the progression of the program. However, missions cannot expect all four knobs to remain 
fixed for the duration of the mission. No program is without issues or changes, and the knobs represent 
the program’s flexibility to absorb changes and address issues. Requirements-driven missions will 
generally aim to solve technical issues keeping a low risk tolerance while accepting cost and schedule 
changes whereas constraints-driven missions will address technical issues by reducing scope or accepting 
additional risk to stay within cost and schedule constraints. 
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Figure 3-5.  Mission design variables. 

Early designations of mission risk tolerance before any real knowledge of the technical issues that will 
arise during development (and the stakeholders’ willingness to tolerate those risks) can therefore be 
baseless. Mission assurance approaches that rely on fixed assumptions are not flexible to the uncertainty 
in the mission.  

3.2 Step 2: Align Iterations to Project Tempo 

It is important to recognize that this is an agile and iterative approach. The full cycle is aligned with the 
project tempo, ideally takes no more than a few weeks, and is continually repeated. This carries through 
major milestones and ultimately delivers Certification of Flight Readiness (CoFR) at Flight Readiness 
Review (FRR). Figure 3-6 shows the iterative nature of this agile approach in context of the full mission 
life cycle.  

These iterations optimize mission assurance activity based on the risks to mission success objectives as 
you go. It also burns down risk to an acceptable level within the overall mission risk tolerance that is 
agreeable and well understood among stakeholders thus creating more realistic expectation of mission 
success for supporting CoFR. The first cycle will likely take longer than those following since more time 
is required for establishing a baseline of risks, divergences, and responses. 

 
Figure 3-6.  Alignment to Project Tempo over mission lifecycle. 
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3.3 Step 3: Identify Risks and Divergences in Context 

Once the mission’s initial “knobs” are established, the program can begin to think about risk. Loosely 
speaking, risks are anything that might cause the program to adjust one of its knobs. When thinking about 
risk, mission context is important. For example, a lack of battery conditioning might not be a risk for a 
one-year LEO mission, while it likely poses a significant risk to a ten-year GEO mission. Similarly, 
contamination can be a significant risk to some missions, and not to others. The orbit, lifetime, and intent 
of a mission provides the context within which to evaluate risk.  

3.3.1 Identify Risks and Divergences 

Programs will generally want to conduct an initial assessment of the risks of a mission. There are many 
tools and frameworks for identifying risk areas and common pitfalls. General examples for guidance are 
ISO 17666, Space Systems Risk Management; the Risk, Issue, and Opportunity Management Guide for 
Defense Acquisition Programs; and NASA NPR 8000.4, Agency Risk Management Procedural 
Requirements. The initial risk assessment is also where a “blitz” of Aerospace attention from subject-
matter experts (if the program can afford it) can be especially effective.  

Approaches to identifying high-risk areas of a mission such as those described in Section 3.1.4 can also 
provide an initial idea of where a program needs to focus its attention. Areas to consider include:  

• Generally-agreed-upon critical areas (e.g., power, communication, Do No Harm, safe modes, 
interfaces) 

• Areas of specific concern for this mission (contamination, EMI, radiation, non-space parts, 
previous failures) 

• New items (first flight, changes from last time) 

• Items from the Mission Assurance Baseline (MAB) or tailored MAB 

• Lessons learned / “gold rules” (software, polarity, test like you fly) 

• Expert opinion and experience  

The risks that emerge from this initial pass typically represent known and “known unknown” risks. The 
“unknown unknowns” will generally emerge during the execution of the program. The mission assurance 
approach needs to be flexible enough to adjust.  

The team should always keep the context of the mission in mind. Something that is a risk for a system 
with a 10-year lifetime might not be a risk for a mission with a lifetime of one year. Remember that 
success is not always binary. Limited or degraded system performance may still achieve mission 
objectives. There is always a range of risk trades and dispositions that can be exercised to achieve the 
optimal operational performance within the mission constraints. It may be possible to accept risk that only 
degrades performance or threatens performance that is marginally important to the mission objectives.  

The result of the initial assessment is often a full laundry list of issues, deficiencies, and risks from 
various disciplines, but this initial assessment is just the beginning. It is important to keep in mind that 
risk lists (like requirements lists) are products of the human imagination and thus never guaranteed to be 
complete, self-consistent, or fully accurate. Programs must revisit the risk assessment process frequently, 
as part of agile design, build, and test iterations, preferably at the start of each iteration. 
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3.3.2 Identify Potential Reduction Efforts 

Once risks are identified, the team should consider both specific and overarching risk reduction efforts. 
These can be specific actions, like the following: 

• Investigate GPS dropouts over the poles and recommend firmware updates 

• Add a modal survey test to the test campaign 

• Add a redundant receiver to the design 

• Add Reed-Solomon encoding to the downlink 

• Test all COTS parts upon receipt 

They can also be more overarching, general activities, like the following: 

• Analyze the thermal performance 

• Review all ICDs for discrepancies 

• Witness testing 

• Validate Do No Harm artifacts 

• Add a review or a standing meeting with high-risk mission element representatives 

• Plan for a two-week review of some mission deliverables in the mission schedule to allow for 
subject-matter expert input as necessary 

Missions should start with broad concepts and refine as necessary. Early in the program, risks are 
generally broader and based on general principles; later, risks become more specific and are more often 
related to observed failures or deficiencies. The team should tie reduction efforts to specific risks where 
possible, but this doesn’t have to be a one-to-one mapping. While the team should take care to make the 
risk statements crisp and actionable, the team should remain flexible and avoid getting hung up on 
specific details. The goal is to understand if constraints will be violated or objectives may not be met (e.g. 
mission success), not to achieve exquisite risk documentation. 

The first risk list is never complete; indeed, the latest risk list is also never complete. The power of agile 
iterations is that it allows risks that weren’t identified in earlier iterations to be uncovered in later 
iterations, and the program evolves toward completion.  

3.3.3 The Role of Peer Reviews 

Although not required by the class agnostic heuristic, many programs find peer reviews helpful in the risk 
identification step. Peer review serves two primary purposes: (1) to provide technical input for the team 
on their design, and (2) understand risks as they emerge. These reviews can be small one-on-one meetings 
or subject matter expert / team interactions, but the key is that they serve to provide the engineers 
actionable feedback. Ideally some external reviewers participate to provide perspective and reduce 
groupthink.  
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The team can use these peer reviews to adjust their designs as necessary and to identify potential 
divergences from the current scope or constraints. These possible divergences should be actionable, 
tradeable risks – not “paranoia” or “what-if” exercises. 

3.4 Step 5: Assess Efforts against Objectives and Constraints 

Once the team has the initial – or most recent iteration – of the risk list, it’s time to estimate the level of 
each risk and the amount of reduction possible, as well as the effort required to conduct each risk 
reduction action. The amount of risk reduction expected for each mitigation action, and the effort 
estimated for each action, help the team estimate the “bang for the buck” of each action – an estimation 
central to the class agnostic concept.  

While several frameworks are discussed here, teams should keep the Agile mindset in mind. The goal of 
assessing risks and efforts is to apply resources where they will do the most good – not to produce perfect 
estimates, or perfect risk analysis charts. In many missions, the whole effort is rather informal. The 
estimates are made to inform decision-making, not to make statistical predictions. Documentation should 
be focused on providing the rationale behind the decisions made, rather than on achieving a certain 
“magic number” of risks or an exact estimation of “bang for the buck.” 

In all cases, keep the context in mind – the program’s objectives, constraints, and risk posture will drive 
the estimation process. A high risk on a Requirements-driven mission might be a baseline risk on a 
Constraints-driven mission. 

3.4.1 Estimating Risk and Risk Reduction 

Teams frequently get hung up in quantifying risk. The standard 5x5 risk matrix shown in Figure 3-7 
provides a useful tool for identifying risk levels by likelihood and consequence, but has pitfalls. 

 
Figure 3-7.  The standard 5x5 risk matrix (Guarro, 2011). 

Chief among these pitfalls is the tendency to view the numerical numbers on the axes as statistically 
significant, data-driven values. Some risks can be quantified in this manner, but on one-of-a-kind 
missions, the team is unlikely to have enough real data to be able to give a statistically solid number for 
the true likelihood of an event. This is especially true on constraints-driven missions, and research and 
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development missions, for which the true likelihood of failure is unknown. Another pitfall is the tendency 
for risks to span categories across the 5x5 risk matrix. A single issue – for example, the failure to conduct 
a true “week in the life” test – may be relatively likely to result in minor issues, but relatively unlikely to 
result in severe issues. Real risks don’t adhere to simple categories and trying to force-fit them into their 
exact box usually wastes a lot of time and effort that could instead be focused on resolving issues.  

Instead, the class agnostic heuristic recommends adopting a more Agile mindset to risk estimation. Teams 
may choose to use the 5x5 risk matrix, but except for very clear-cut, quantitative risks, teams should 
consider the numerical values in the risk matrix as guidelines. Different stakeholders may have different 
interpretations as to what each of the “likelihood” categories mean; one may consider something likely if 
it occurs about 10% of the time; another might consider something likely only if it occurs more than 50% 
of the time. The use of numerical values helps define what each of the likelihood categories means in a 
way that can be understood by all stakeholders. In most cases, however, they should not be interpreted as 
a statistically evaluated numerical estimation.  

Some programs – especially smaller, constrained programs – might consider a simplified 2x2 risk matrix, 
instead, as shown in Figure 3-8. While this might seem oversimplified, it helps programs quickly 
categorize major risks and focus their efforts on mitigating – rather than categorizing – them.  

 
Figure 3-8.  Simplified mission risk matrix. 

Teams may also consider using other Agile methods like “planning poker” to estimate broad risk levels – 
whether a given risk is high, medium, or low – or can be used to estimate where a risk should fall on each 
axis the 5x5 risk matrix. Planning poker offers an informal less structured method that uses a game-like 
format to avoid bogging down while leveraging the full knowledge of the team. (Agile Alliance, n.d.) 

Whatever method is chosen, teams must not only estimate the current risk level, but also the risk 
reduction made possible by each proposed mitigation action. This can be accomplished by showing the 
risk reduction on the 5x5 risk matrix as shown in Figure 3-7, or by playing planning poker again on while 
envisioning the end state. The difference between the “before” and “after” risk levels provides an estimate 
of risk reduction.  
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3.4.2 Estimating Efforts 

Teams will also need to estimate how much effort is required to conduct each proposed risk mitigation 
action. These include broad actions, such as reviewing ICDs and witnessing testing, and specific actions, 
such as adding extra tests or making software / hardware changes.  

One of the drawbacks of the 5x5 risk matrix is that it focuses only on the risk, not on the effort required to 
mitigate that risk. Especially for resource-constrained missions, risk reduction must take place in the 
context of the effort required. The most effective risk-reduction method is worthless if it results in 
program cancellation due to lack of funds.  

Estimating the effort involved can include a simple guess at the number of staff-days or staff-weeks and 
cost involved, or it can involve another round of Agile “planning poker,” where the focus is on the 
amount of effort it will take to implement the proposed mitigation action. (Indeed, Agile planning poker is 
most commonly used for effort estimation.) 

3.5 Step 5: Rank and Execute High Value Efforts First 

Once risks and actions have been defined, and the effort to accomplish each estimated, the team evaluates 
the “bang for the buck” for each risk / action set and ranks them in a method that allows the team to 
decide how to apply its mission assurance efforts. 

It can do this by evaluating the ratio between technical risk reduction and programmatic risk increase for 
doing any given action. Technical risk is defined as risk against the already-established scope, as 
estimated in Step 3; programmatic risk is defined as risk against the cost, schedule, and resource 
restrictions already defined. In some heavily resource-constrained missions, the ratio might be inverted, 
and the team might instead consider the programmatic (cost or schedule) risk reduced for the technical 
risk incurred. For example, a typical trade in a constraints-driven program is to remove a secondary 
mission objective in order to maintain cost and schedule.  

With the ratios defined, the team now ranks risk reduction, mission assurance, or even design efforts in 
order from most “bang for the buck” to least “bang for the buck”. Note that the elements are not ranked in 
order from “highest risk” to “lowest risk,” or even from “highest risk reduction” to “lowest risk 
reduction.” The effort required to implement an objective or reduce risk is part of the assessment. “Low 
hanging fruit” may fall higher on the list than more serious risks that are harder to mitigate or more 
interesting objectives that consume more resources. The sum of the effort required to implement these 
actions (the sum of the programmatic risk) tells the program how many resources are required. 
Constrained programs will need to draw the line at the limit of their resources; items that fall below the 
line are not addressed unless more resources become available. Then the team executes the efforts 
roughly in order. 

3.5.1 Visualization Approaches 

One way to visualize this would be in a table of risk reduction efforts, listing the estimated amount of risk 
reduction, the confidence in that estimate, the estimated cost or effort required, and the confidence in that 
estimate. Figure 3-9 is a notional example.  
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Figure 3-9.  Visualization example for space mission risk reduction trades. 

Missions could use similar charts to show how their reduction efforts reduce their risk to match their 
overall risk posture – or where the cost of such efforts run up against the “hard line” of the resources 
available. 

This is just one way to rank and execute risk reduction efforts. Missions may choose instead to do 
something simpler, like plotting risks along a programmatic / technical risk matrix as shown in 
Figure 3-10. Missions can then determine which actions to prioritize based on where they fall along 
green  / yellow / red boundaries the team has drawn itself.  

 
Figure 3-10.  Visualizing risk trades with a programmatic/technical risk matrix. 

3.5.2 Execute Efforts 

With risk and risk-reduction efforts identified, ranked in order from most “bang for the buck” to least 
“bang for the buck,” and discussed within the program, the team can now execute the efforts they have 
agreed provide the best mission assurance value.  

ID
Item

(Risk / Opportunity / Issue / Trade) Description / Story Response / Action Benefit*
Benefit

Confidence
Cost Margin

Impact
Cost

Confidence
Sched Margin

Impact (weeks)
Schedule

Confidence Execute?
R-001a Software Risk #1 Potential delay to schedule Add to WITL with time to follow-up 20 High  $               150,000 Medium 2 High Yes
R-001b Software Risk #1 Potential delay to schedule Add Software peer review 40 High  $                 35,000 High 1 High Yes
I-001a IR Focal Plane Weld Cracks IRFPA design welds show cracking Correct Welding Process 40 Medium  $                 30,000 High 8 Low No
I-001b IR Focal Plane Weld Cracks IRFPA design welds show cracking Inspect Welds 20 High  $                 25,000 High 14 Medium No
I-001c IR Focal Plane Weld Cracks IRFPA design welds show cracking Mechanical Clamping 8 High  $                 30,000 High 2 High Yes
I-002a Finite Element Model FEM not correlated; potential for 

structural failure
Add modal survey test

40 High  $               250,000 High 4 High Yes

I-002b Finite Element Model FEM not correlated; potential for 
structural failure

Add extra accelerometers to sine vibe 
testing

8 Medium  $                 25,000 High 1 Medium No

O-001a New OS for Software Opportunity Could boost performance by 20% Build portability to new OS 3 Medium  $                 50,000 Medium 2 Medium No

Margin Used = 93% Margin Used = 75%
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3.5.3 A Word About Messiness 

Mission assurance and risk management are rarely simple and elegant. The ranked risk list is a nice 
theory, but messier in practice – it is unlikely the mission will have a clean list of tasks in a neat order. In 
fact, like many of the other steps in the class agnostic heuristic, most of the authors have never actually 
produced an official ranked risk list but have instead operated on an intuitive feel for where assurance 
efforts provide the most bang for the buck.  

Agile mission assurance is an art as much as it is a science. Teams should remember the Agile mindset, 
and that the main point of mission assurance is to improve the chances of mission success, not to 
document risks. Agile values individuals and interactions over processes and tools, and customer 
collaboration over checklists. If the tool or process doesn’t work for your mission, use a different one! 

3.6 Step 6: Reevaluate, Refine and Reiterate 

The most critical part of the class agnostic mission assurance process, and the most related to Agile 
principles, is Step 6: Re-evaluate and Refine. As described in previous sections, early estimates of risk are 
usually the least accurate, and correspondingly, mission assurance plans developed early in mission 
execution are rarely applicable throughout the mission lifecycle. As a mission progresses, priorities will 
change, and new risks and issues will emerge. Some efforts will take more resources than expected, and 
some efforts will take fewer resources than expected. On a regular basis – whether that be after a two-
week “sprint,” monthly, or quarterly – the team meets to determine what has been done, what remains to 
be done, whether priorities have changed, or whether new information has emerged that might cause the 
team to re-direct mission assurance activities. If the mission is still operating within the agreed-upon cost, 
schedule, requirements, and risk posture “knob values,” this can be done internally to the team. Having 
agreed upon the next set of priorities (or that the current efforts should continue), the team embarks on the 
next iteration through the cycle.  

If enough issues have arisen that one of the “knobs” needs to be adjusted, the government, contractor, 
Aerospace team should engage leadership and, if necessary, key stakeholders. Leadership may, in 
discussion with stakeholders, adjust the constraints of the mission, adding funds and schedule or reducing 
scope and accepting more risk, in order to absorb the changes that arise. This is where communication 
with stakeholders can be key. Programs may delegate decision authorities differently depending on the 
size and criticality of the mission, but in general, only leadership and / or mission stakeholders can change 
one of the “knobs” of a mission. At a minimum, programs will need to inform leadership and key 
stakeholders if adjustments to the knobs are necessary.  

Teams may use the Agile class agnostic cycle in the context of mission milestones. For example, a team 
might make use of peer reviews after every few sprints to identify areas of concern and point out where 
design and mission assurance efforts might be overlooking key risks. A larger examination of the overall 
“knobs” of the mission might occur at major programmatic reviews, when developers, leadership, and 
stakeholders can all meet to review program status and decide if any of the “knobs” need to be adjusted.  

3.7 Step 7: Capture Decisions and Lessons Learned 

During the execution of the class agnostic mission assurance cycle, teams should look both inward and 
outward. Within the mission, teams should document all decision-making. As decisions, trades, and 
adjustments to the “knobs” of the mission are made, it is critical that teams capture the rationale behind 
these changes. Not only does this help maintain continuity across personnel and leadership changes, it 
helps prevent “risk aversion creep” by keeping the entire team aware of what trades have already been 
made between cost, schedule, risk, and requirements – and why. This history is particularly important as 
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the mission approaches launch, when cost and schedule risks are all in the rear-view mirror, and 
leadership is most concerned with technical risk.  

Additionally, missions should be outward-looking, and should document lessons learned frequently 
during mission execution. Capturing lessons learned after a certain number of “sprints,” or at a minimum 
at each major milestone, ensures that lessons are documented while they are still fresh. Reviewing key 
lessons learned from past missions at each milestone can also help the team anticipate problems that 
might occur during the next phase. Lessons-learned become sources for evaluating risks for future 
missions (see section 3.3.1). 

While process documentation, lessons learned, and reference material are important, truly efficient 
mission assurance requires apprenticeship. Documents and “how to” manuals have their place but are no 
substitute for experience. Young engineers should be paired with experienced engineers to help them 
develop good instincts. 
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4. Conclusion 

Like all Agile approaches, the class agnostic mission assurance heuristic is a living process, and the 
approach outlined here is not meant to be prescriptive. Appendix B illustrates how variations of this 
approach have been tailored to specific customers and programs, and future programs considering a more 
agile approach to mission assurance should consider how the class agnostic approach might best apply to 
them.  

Even within the execution of the class agnostic mission assurance cycle, program managers and the 
mission assurance team will need to continuously evaluate what is working for them, and where 
improvement is needed. Rarely will any given mission follow the process outlined here in its entirety, 
with formal risk evaluations and a formal list of efforts to be executed in a strict order. Teams are 
encouraged to “embrace the messiness” of the process, and recognize that good mission assurance is an 
art, not a science (or a checklist). The Agile mindset encourages teams to re-evaluate processes regularly 
and discard those that don’t work, and this approach is no exception. 

It is the hope of the authors that the class agnostic heuristic presented here will encourage the mission 
assurance community to think outside the Class A-D box for holistically addressing technical risks as we 
strive towards the goal of properly balancing risk mitigation within a programmatically constrained 
environment. The authors also hope that mission teams will take on the challenge of adapting and 
evolving this approach, developing their own tools and approaches, and sharing their findings with the 
rest of the community.  

  



24 

5. References 

[1] Agile Alliance. (n.d.). Agile 101 - What is Agile Software Development? Retrieved October 13, 
2020, from https://www.agilealliance.org/agile101/ 

[2] Ambler, Scott. (n.d.). Examining the Agile Manifesto. Retrieved October 13, 2020, from 
http://www.ambysoft.com/essays/agileManifesto.html 

[3] Bitten, R., Mahr, E., Kellogg, R. (2013). Cost Estimating of Space Science Missions (Report No. 
ATR-2013-00108). The Aerospace Corporation. 

[4] Department of Defense. (2017). Risk, Issue, and Opportunity Management Guide for Defense 
Acquisition Programs. http://acqnotes.com/wp-content/uploads/2017/07/DoD-Risk-Issue-and-
Opportunity-Management-Guide-Jan-2017.pdf 

[5] Guarro, S. B. (2011). Mission Risk Assessment Process and Techniques for APR (Report No. ATR-
2012(9012)-1). The Aerospace Corporation. 

[6] International Organization for Standardization. (2016). Space Systems - Risk Management (ISO 
Standard No. 17666:2016). https://www.iso.org/standard/33149.html 

[7] Jasper, L., Hunt, L., Voss, D., and Jacka, C. (2018, August 4-9). Defining a New Mission Assurance 
Philosophy for Small Satellites [Paper No. SSC18-WKII-05]. 32nd Annual AIAA/USU Conference 
on Small Satellites, Logan, UT, USA. https://digitalcommons.usu.edu/smallsat/2018/all2018/431/ 

[8] Jasper, L., Braun, B., and Hunt, L. (2020, March 8-13). New Constraint-Driven Mission Construct 
for Small Satellites and Constrained Missions [Paper presentation]. IEEE Aerospace Conference, 
Big Sky, MT, USA. 

[9] Johnson-Roth, G., Tosney, W. (2010). Mission Risk Planning and Acquisition Tailoring Guidelines 
for National Security Space Vehicles (Report No. TOR-2011(8591)-5). The Aerospace Corporation. 

[10] National Aeronautics and Space Administration (NASA). (2017) Agency Risk Management 
Procedural Requirements. (NPR 8000.4B). 
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8000&s=4B  

[11] Read, A., Chang, P., Braun, B. Voelkel, D. (2016). Rideshare Mission Assurance and the Do No 
Harm Process (Report No. TOR-2016-02946). The Aerospace Corporation. 

[12] Taylor, A., Becklund D., Rast S., Ayers J. (2019). Adaptive Mission Assurance Strategy for Pre-
Acquisition: Phase 1 (Report No. TOR-2019-01781). The Aerospace Corporation. 

[13] US Air Force Research Laboratory Space Vehicles Directorate AFRL/RV (2020). Configuration 
Management (CM) and Configuration Control Board (CCB) Process Version 4.0. 

[14] Venturini, C. (2017). Improving Mission Success of CubeSats (Report No. TOR-2017-01689). The 
Aerospace Corporation.  

[15] Venturini, C., Braun, B., Hinkley, D., Berg, G. (2018, August 4-9). Improving Mission Success of 
CubeSats [Paper No. SSC18-IV-02]. 32nd Annual AIAA/USU Conference on Small Satellites, 
Logan, UT, USA. https://digitalcommons.usu.edu/smallsat/2018/all2018/431/ 



25 

Appendix A. Constraints-Driven Mission Attributes  
and the Evolution of the Space Innovation Directorate’s  

Class Agnostic Mission Assurance Approach 

A.1 Constraints-Driven Mission Attributes 

A.1.1 Program Attributes 

Small, risk-tolerant, constraints-driven missions are distinct from ACAT 1, Risk Class A Missions that 
demand greater system reliabilities for operational availability and resilience. It is these distinctions that, 
when leveraged, enable the efficiencies necessary for meeting mission success objectives within 
constrained resources and schedule.  

Programmatically, these missions are typically smaller systems for 
demonstration, technology maturation, and / or deploying a small 
component of an overall capability where resilience is delivered at the 
architecture level. They possess fewer requirements, condensed 
management teams, and a necessity to trade system performance 
requirements and risk for a return in cost and schedule benefit. 
Customer mission managers and their leadership must be willing to 
accept additional risk. Most importantly, the mission team must have 
the freedom to fail. 

Contractually, efficiencies are needed for remaining within 
constrained budgets and schedules. Efficiencies are realized by 
leveraging developer processes, tailoring statements of work and 
limiting mission assurance deliverables to only that which is critical 
to achieving good enough performance that still meets mission 
objectives. A low risk tolerant mission team pursuing full system 
performance could never execute “Class A” mission assurance 
without contracting for the appropriate developer support and 
deliverables. Similarly, a mission team operating on a shoestring 
budget and accelerated schedule cannot contract for a full 
complement of mission assurance support and deliverables. Since 
mission success is defined by objectives rather than system 
performance, it would be inefficient to purchase support and 
deliverables that provide only diminishing returns when good enough 
performance is adequate. Finally, smaller mission teams will rarely 
have the additional time or people to properly assess a full complement of support and deliverables 
anyway.  

A.1.2 Technical Attributes 

Looking at system design, the small, risk tolerant space vehicles are usually single string systems 
designed for a one to three-year design life with acceptable mission reliabilities ranging between 40% and 
90% over a one-year mission life. These systems can, most of the time, tolerate operational down times 
but also have a built-in capability for failing gracefully into a known state for recontact, troubleshooting, 
anomaly resolution, and reboot of the system. This is why simply trying to tailor Class A standards and 
prescriptive requirements for an existing Class A designed system will not result in the same cost and 
time savings as for starting with a streamlined design in the beginning. 
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For manufacturing, developers tend toward a higher usage of commercial parts. There is rarely a spares 
concept beyond that of sparing at the system level; the space vehicle itself. In the case of large 
constellations of smaller satellites, the satellites themselves are the sparing concept since capability is 
delivered at the architectural level. This is the case for CPA which is discussed later. Small satellite 
ground systems, typically servicing multiple satellites at a time, will usually have a sparing concept for 
ensuring availability. 

A.2 Constraints-Driven Risk Tolerance 

Constraints-driven missions must accept risk and manage that risk along with stakeholder expectations of 
mission success. There is almost always a willingness to accept risk at the start of a mission development 
that gives way to an unwillingness to accept mission compromise or failure at launch. Constraints-driven 
missions still rigorously manage risk, but they accept the reality of significant residual risks given 
constraints on budget and schedule. This includes the possibility of accepting medium to high residual 
risks at launch. It may make more sense to launch with a 50% chance of success today than to accept a 
0% chance if the team misses a rideshare opportunity or if mitigation costs threaten mission cancellation. 
Shown here are two missions and their risk matrices at launch.  

ORS-1 is a great example being schedule constrained due to a warfighter urgent need. In Figure A-1, one 
can see that there were significant risks, including red & yellow risks, at launch which indicates the 
increased risk tolerance of the ORS-1 program. It was better to launch with a red risk than deny an urgent 
capability to the warfighter. In fact, the red risk identified was accepted at the beginning and despite this, 
ORS-1 launched after a three-year development and was successful on orbit. 

  
Figure A-1.  ORS-1 mission risk assessment at launch. 

STPSat-3 is another example being budget constrained. In Figure A-2, one can see that there were many 
risks, including yellow risks at launch also indicating an increased risk tolerance. This mission also 
launched after a three-year development and was successful on orbit. 
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Figure A-2.  STP-Sat-3 mission risk assessment at launch. 

A.3 Spectrums of Mission Assurance 

Figure A-3 is a quad chart that shows the spectrum of constraints versus requirements driven missions 
along examples for those types of missions. 

 
Figure A-3.  Spectrum of mission assurance for constraints and requirements-driven missions. 

In the upper right, there are traditional Class A/B missions, where requirements drive the mission. 
Though everyone aims to launch on time and on budget, in the end, for these types of missions, the 
requirements are not compromised.  
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At the other extreme are the many typical CubeSats. Usually built by universities, CubeSats often 
rideshare along with other primary missions, and therefore have a fixed launch date. Most CubeSat 
builders will aggressively descope their missions as needed to meet this fixed launch date. As on put it, 
“we’d rather take a 5% chance of it working on orbit, than a 0% chance of it ever launching.” STP has 
recently launched a similar mission (STPSat-5) that was manifested on a commercial rideshare, and could 
not therefore influence the launch schedule. The mission team accepted data quality issues and 
operational constraints to stay within budget and launch on schedule. They have had issues on orbit and 
have had to take time during LEOP to solve them, but they will eventually get to operational status for 
achieving some degree of mission success. 

In the other corners are missions more typical of STP, such as STPSat-2 or STPSat-3, which although 
they were more fundamentally requirements driven, still aimed to meet requirements with streamlined 
mission assurance. And ORS-1 had a fixed schedule sacrificing technical performance where needed to 
maintain that schedule. But ORS-1 applied a more traditional mission assurance approach which is more 
comprehensive than one would apply to a typical CubeSat or STPSat-5. 

Figure A-4 shows that SID supported missions have, over the decades, migrated becoming more 
constraints-driven missions with minimal mission assurance (lower left corner). This trend has further 
evolved how SID approaches mission assurance; specifically, an agile constraints-driven approach that is 
agnostic to a specific risk class. 

 
Figure A-4.  Migration of SID missions to constraints-driven mission assurance. 

A.4 Evolution of Class Agnostic Mission Assurance 

The move toward more constraints-driven, minimal-mission-assurance missions has caused the SID 
mission assurance approach to evolve from a more traditional mission assurance approach adapted for 
constraints-driven missions to an agile risk class agnostic version that is used today. Importantly, each of 
these models remains relevant (i.e., tools in the SID toolbox) for use depending on the mission need. 
Figure A-5 depicts the evolution to date. 
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Figure A-5.  Evolution of mission assurance for constraints-driven missions. 

In the top left corner, there is the “traditional” Class A-D spectrum of mission assurance approaches that 
tailored level of insight based on the mission risk classification (A to D). This assumes that Class A 
requirements-driven missions (i.e., Class A/B) will have the resources available to dig down into each 
mission area for the full depth of insight, while constraints-driven missions (i.e., Class C/D) will be 
willing to accept the additional risk associated with the lower level of insight. This traditional approach 
assesses all aspects of the mission (e.g., all SV subsystems, launch segment, ground segment, etc.), 
reaching back for all applicable SMEs. It provides assurance that the space system will operate properly 
on-orbit by verifying requirements, ensuring adequate environmental testing, and providing independent 
risk assessments from appropriate experts.  

As resources become constrained, the mission can tailor further by concentrating limited mission 
assurance efforts into specific areas. This “Tailored” mission assurance model “tailors” both the breadth 
and depth of insight (i.e., which specific subsystems or areas will be evaluated). Subsystems or segments 
that are deemed lower risk (e.g., a production line, use of heritage components or more extensive testing) 
are tailored out for specific evaluation by dedicated SMEs. This frees up scarce resources to assess the 
higher risk subsystems or segments (e.g., modifications to a production run, changes in components, or 
“Do No Harm” verifications). This more focused expertise leverages what is already known to provide 
reasonable assurance that the system will operate properly on-orbit. 

But if broad coverage of subsystems is desirable and resources are insufficient to achieve the most 
minimal level of insight across all SMEs and experts there is the “generalist” approach. The generalist 
approach offers a better opportunity for identifying risks that the tailored approach could miss without 
having to expend the resources required of the traditional approach. This approach replaces SME 
expertise in every area with three to four generalist system engineers who possess seasoned experience 
(or “Spidey Senses”) to screen for problems requesting additional SMEs and experts as needed.  

This was first initiated on STPSat-5 employing four individuals from different areas of the company. This 
can be scaled down to accommodate an extremely low level of support, for example, just one full time or 
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perhaps a half time generalist. This approach provides a limited assurance that the system will operate 
properly on-orbit.  

The most recent development that SID has recently begun to productize is the “Class Agnostic” mission 
assurance model. This model is not new but rather an outgrowth of mission assurance evolutions to date. 
This model is described in the main body of the TOR. 
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Appendix B. Other Applications and Illustrations of the Class Agnostic Concept 

B.1 Early Class Agnostic Diagrams and Approaches 

The initial Class Agnostic approach diagram in Figure B-1 was developed by Peter Chang and Andrew 
Read, and emphasizes the “knobs” of the mission and the need to adjust your risk management in 
accordance with your resources. It also recommends an up-front “blitz” of evaluation by subject-matter 
experts to help determine where risk mitigation efforts should be focused.  

 
Figure B-1.  Initial class agnostic approach diagram. 
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The initial presentation of this approach (see Figure B-2 and Figure B-3) also included a discussion of the 
applicability of Class Agnostic Mission Assurance to Continuous Production Agility.  

 
Figure B-2.  Applicability to Continuous Production Agility. 

      
Figure B-3.  Continuous Production Agility flow using class agnostic mission assurance. 
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Later evolutions of the same paradigm changed the diagram slightly (See Figure B-4) to streamline it and 
to more clearly label the steps.  

 
Figure B-4.  “Square” diagram of class agnostic mission assurance (Jasper et al., 2020). 

B.2 AFRL Program-Driven Approach 

A version of the “square” diagram (See Figure B-5) appeared in a paper for the IEEE Aerospace 
Conference. (Jasper et al., 2020) 

In this paper, the authors lay out the class agnostic concept against a typical small satellite program 
execution. This approach makes heavy use of peer reviews and the regular discussion of trades between 
requirements, risk, cost, and schedule, with higher-level programmatic reviews conducted at longer 
intervals and where “knobs” must be adjusted.  

This paper shows how the overall construct can be adapted to a program’s needs, with steps adjusted to fit 
the program execution cycle and the practices of the organization.  
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Figure B-5.  “Square” diagram of class agnostic mission assurance (Jasper et al., 2020). 
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