Near-Earth Object Student Handout

Name: <u> </u>	Date:	
----------------	-------	--

Directions: Students read the prompts and answer in complete sentences. Distance learning adaption is for students to fill in the yellow sections.

Part 1: Why Does Curiosity Lead Us to Space?

Section A: Thinking about space

- 1. When do you **think** were you first curious about space? Explain in detail as much as you remember.
- 2. How often do you **think** space **connects/ interacts** with Earth? Explain in detail.
- 3. How do you **think** space can specifically affect your life today? Explain your thinking.

Section B: The Aerospace Corporation

4. What do you **notice** or **observe** about The Aerospace Corporation message?

Section C: Citizen Science Application

- 5. Students get a computer/ tablet and go to the link, Zooniverse Asteroid Hunters
- 6. What did you learn about identifying asteroids? ____
- 7. How might citizen science be useful in other research projects?
- 8. How does this connect to our idea of science being discovered daily and that everyone can be a scientist?

Part 2: How Do Scientists Identify Near-Earth Objects?

Section D: Vocabulary Development

Vocab	Official Definition	Image: Draw a picture to represent the vocab word
1. Object: The thing	1. Main item (object primary designation)	1.
2. Close-Approach (CA): Path next to Earth	2. Pathway that is near Earth	2.
3. Close-Approach (CA) Date: When is the object going to arrive closest to Earth	3. Date and time (TDB) of closest Earth approach. "Nominal Date" is given to appropriate precision. The 3-sigma uncertainty in the time is given in the +/- column in days_hours:minutes format (for example, "2_15:23" is 2 days, 15 hours, 23 minutes; "< 00:01" is less than 1 minute).	3.
4. CA Distance Nominal (LD au: How close is the object to Earth compared to the distance of Earth to the Moon	 The most likely (Nominal) close-approach distance (Earth center to NEO center), in LD (Lunar Distance) and au. 	4.

5.	CA Distance Minimum (LD au): The closest the object to get to Earth with possible error added in	5.	The minimum possible close-approach distance (Earth center to NEO center), in LD (Lunar Distance) and au. The minimum possible distance is based on the 3-sigma Earth target-plane error ellipse.	5.
6.	V relative (km/s): How fast is it going compared to Earth	6.	Object velocity relative to Earth at close-approach.	6.
7.	V infinity (km/s): How fast is the object going compared to empty space	7.	Object velocity relative to a massless Earth at close-approach.	7.
8.	H (mag): How big is the asteroid	8.	Asteroid absolute magnitude (in general, smaller H implies larger asteroid diameter). Undefined for comets .	8.
9.	Estimated Diameter: How big is the estimated diameter of the asteroid	9.	Diameter range (min - max) estimated from the asteroid's absolute magnitude (H) and limiting albedos of 0.25 and 0.05.	9.

10. Au: The distance between the Earth and the Sun	10. One Astronomical Unit (au) is approximately 150 million kilometers (see glossary for definition).	10.
11. LD: The distance between Earth and the Moon	11. One Lunar Distance (LD) is approximately 384,000 kilometers (see glossary for definition).	11.

Section E: Near-Earth Objects

- 9. What do you **think** a near-Earth object is? ____
- 10. What do you **think** a fireball is?

Section F: Near-Earth Object Careers

11. List out three things from the video that you find interesting, new, or have a question about.

Section G: Fireballs

- 12. Students get a computer/ tablet and go to <u>NASA Fireballs</u>. Play and investigate what all the buttons and zoom features do. Then circle which area your teacher is having you focus on from the list:
 - -Date ranges -Impact size ranges in kt -Latitude and Longitude ranges -Energy ranges
 - -Velocity ranges
- 13. Change the dates to be the most recent. Then zoom in and take a **screenshot** of your observations of fireballs. Insert your screenshot here.
- 14. What are **two** specific things you notice or observe about the fireballs for your section? Explain in detail.

15. What do you **think** you could do if you could **alter**/ **change** and keep the objects from hitting Earth? What would you do/ change and why?

Section H: Defending Earth

- 18. What keywords/ vocabulary do you think will help scientists and engineering investigate NEO and keep Earth safe?
- 19. What if we could change whether a NEO becomes a fireball, what would you do to keep a NEO from hitting Earth? Tell your story in detail.

Section I: NEO Deflection App

- 20. Students get a computer/ tablet and go to the link: <u>https://cneos.jpl.nasa.gov/nda/nda.html</u>
- 21. Experiment with all the following options. Write what **happens** when you change each of these:
 - a. Delta-V Mode ____
 - b. Intercept Mode ____
 - c. Time of Deflection ____
 - d. Simulated near-Earth objects ____
 - e. Density (Intercept Mode) ____
 - f. Beta (Intercept Mode) _____
 - g. B-Plane ____