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Summary 

United States national security is highly dependent on DOD space capabilities. It is broadly 
acknowledged that these capabilities are susceptible to adversary attack due to an 
intrinsically fragile architecture that has long assumed a relatively benign space environment. 
This fragility has not been a problem historically, but with the expanding number and types 
of threats to U.S. space systems, it now represents a significant Achilles’ heel to America’s 
national security. 

To assure that critical space capabilities will be available when needed, the U.S. must develop 
a more resilient space architecture. But given the increasing complexity of the DOD space 
enterprise, as well as the dynamic and uncertain threat environment, traditional development 
and design methodologies may not be up to the task. In order to produce a truly resilient 
space architecture, a more nimble methodology is required. 

Fortunately, the basis of such a nimble methodology already exists, one that emphasizes 
particular design principles, like flexibility, adaptability, and survivability. It is known as 
Design for Changeability (DfC) and is inherently better suited to accommodate complexity 
and more effectively respond to uncertain and changing environments like what we see in the 
space domain today. This paper proposes maturing and extending the core DfC concepts into 
a capability development framework referred to as “Designing for Principles” and applying 
this framework to the development of DOD space capabilities in order to support rapidly 
achieving and sustaining a resilient space enterprise architecture. 

 

Introduction 

This paper describes a novel concept for capability 

development called Designing for Principles, which  

is presented as an alternative to the traditional 

systems engineering (SE) approach. Although SE 

has proven to be a remarkably effective capability 

development methodology, it does have some 

inherent weaknesses. This is certainly the case given 

how SE is typically implemented in the Department 

of Defense (DOD)1 and is especially the case when 

it must confront highly complex, uncertain 

circumstances. For a volatile and dynamic  

It’s a poor sort of memory that  

only works backwards. 

—Lewis Carroll 
Through the Looking Glass 
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environment like today’s space domain, the 

arguments to adopt an alternative capability 

development approach are particularly compelling. 

The DfP concept builds upon a design idea first 

introduced in the 2005 timeframe. This idea was 

known by a few names, the two most prominent 

being Design for Changeability2 and Design for 

Adaptability.3 The first term (i.e., Design for 

Changeability, or DfC) is somewhat more common 

in the literature, so that’s what is used here as a 

collective proxy for all related terminology. 

The first part of this 

paper provides an 

overview of DfC. The 

premise of DfC is that, at 

a certain level of 

uncertainty, it makes 

more sense to exchange 

the rigorous Principled 

Design approach of SE 

for one that values 

certain design 

principles, such as 

flexibility and 

adaptability. In other 

words, in highly complex 

and unpredictable 

environments, it is 

generally a superior long-term strategy to develop 

capabilities that are inherently better at effectively 

responding to future changes than to keep trying to 

develop capabilities based on today’s best guess.  

This paper then extends and generalizes the original 

DfC idea into a more robust capability development 

framework designated as “Designing for Principles 

(DfP).” In contrast to SE, DfP emphasizes certain 

design principles over traditional measures of 

technical mission performance. Critically, DfP—

like its DfC antecedent—recognizes that genuine 

resiliency does not come from picking one optimal 

future design now; rather, it comes from the ability 

to continually adapt designs to a range of future 

needs and threats that cannot possibly be known 

and/or characterized today. 

To keep the scope of this paper manageable, the 

discussion will not include how to actually 

implement DfP. Instead, that topic will be addressed 

in a follow-on paper, which will provide specific, 

actionable recommendations for implementing DfP 

across the DOD space enterprise.  

The intended audience for both of these  

papers is primarily enterprise architects  

and systems-of-systems 

engineers supporting the 

DOD space enterprise. 

However, the implications 

of what is being proposed 

here are broad and deep, 

affecting everything from 

how space capabilities are 

acquired to how the U.S. 

Space Force is structured. 

As such, if DfP is 

pursued, it will have 

significant ramifications 

to development contractors, 

government program 

office personnel, service 

headquarters staff, and 

senior decisionmakers across the space community. 

Design for Changeability (DfC) 

Fundamentally, the focus of DfC is on designing a 

system in accordance with certain principles (i.e., 

Designing for Principles!) rather than just designing 

a system to meet a specific set of requirements. 

Strictly speaking, DfC does not entirely abandon the 

notion of requirements, but rather seeks to balance 

traditional functional/performance requirements 

(e.g., speed, weight, resolution, latency) with non-

functional requirements or “-ilities” (e.g., flexibility, 

adaptability, modifiability, changeability, 

…genuine resiliency does not 

come from picking one optimal 

future design now; rather, it 

comes from the ability to 

continually adapt designs to a 

range of future needs and threats 

that cannot possibly be known 

and/or characterized today. 
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survivability) as part of the design process.* For this 

reason, DfC has far less dependence on the stability 

(or even awareness) of functional/performance† 

requirements. 

The principal thrust of DfC is that a system must be 

able to have a sort of “capability fluidity” (this 

author’s term) in order to continue delivering value 

over its lifecycle. As articulated by Kasarda, et al.— 

[The] concept is based on the hypothesis 

that product life ends because a product is 

unable to adapt to change. A product may 

be retired for myriad reasons including that 

it is broken, out of style, or has become 

inefficient due to technology obsolescence. 

In these cases, the product was not able to 

adapt to change—it was unable to self-heal, 

it could not modify or reconfigure to meet 

changing fashion needs, or it could not be 

upgraded, for physical or economic 

reasons, to utilize new technology.4 

Furthermore, Fricke and Schulz established some 

“basic” and “extending” design principles for DfC, 

including: 

 Ideality/Simplicity. Intended to reduce system 

complexity; “ideality” is defined as the ratio of a 

system’s sum of useful functions against a 

system’s sum of harmful or undesired effects. 

 Independence. Intended to minimize the impact 

of changing design parameters; each system 

function or functional requirement should be 

satisfied by an independent design parameter. 

 Modularity/Encapsulation. Intended to cluster 

system functions into various modules while 

 
* A full discussion of functional vs. nonfunctional requirements is beyond the scope of this paper. See Glossary of 

Terms at the end of this paper for a short explanation of the differences. 
† From this point forward, I will simply use the term “functional” instead of the more cumbersome 

“functional/performance.” Though many sources distinguish between functional and performance requirements 

(some even contending that performance requirements can be NFRs), the difference is not particularly important 

here. The salient distinction in this paper is between those types of requirements that relate to technical performance 

and those that pertain to design/architectural principles. 

minimizing the coupling among the modules and 

maximizing the cohesion within the modules. 

 Integrability. Characterized by compatibility 

and interoperability applying generic, open, or 

common/consistent interfaces. 

 Scalability. Characterized by scale-

independence, which avoids significant 

performance degradation with small or large 

deployments and facilitates design reuse. 

 Decentralization. Characterized by a 

decentralized distribution of control, 

information, resources, attributes, and properties 

within the system architecture. 

 Redundancy. Enables capacity, functionality, 

and performance options as well as fault-

tolerance.5 

This work informed an Office of the Secretary of 

Defense (OSD)/Systems Engineering Research 

Center (SERC) research topic titled “Valuing 

Flexibility.” The problem statement for that 

research read, in part— 

… future DoD systems need to be highly 

adaptive to rapid changes in adversary 

threats, emerging technology, and mission 

priorities, both during development and 

during operations. Traditionally, however, 

complex DoD systems have been designed 

to deliver optimal performance within a 

narrow set of initial requirements and 

operating conditions at the time of design. 

This usually results in the delivery of point-
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solution systems that fail to meet emergent 

requirements throughout their lifecycles, 

that cannot easily adapt to new threats, that 

too rapidly become technologically 

obsolete, or that cannot provide quick 

responses to changes in mission and 

operating conditions [emphasis added].6 

This statement is from 2012 and was intended to 

apply defense-wide. It could easily have been 

written today specifically for the DOD space 

enterprise. 

DfC Is Not a Panacea 

While flexibility is certainly a worthy goal, it is not 

an unqualified one. There are reasons not to pursue 

DfC. 

The problem is that flexibility necessarily 

incurs additional investment costs.… The 

notion of designing to the “bleeding edge” 

of performance requirements is antithetical 

to the aims of flexibility, as it consumes 

engineering tradespace. An inherently 

flexible design cannot, axiomatically, 

achieve the same level of technical 

performance along every dimension as the 

performance-optimized design.7  

Consider a system for which we are extremely 

confident that we have nailed down all of the 

requirements and, that over that system’s lifecycle, 

those requirements won’t change and there won’t be 

any new requirements. If all of these stipulations are 

true, then investing in flexibility would be pointless 

(this description would generally include simple 

commodities like clothing, can openers, toasters, 

pencils, etc.). On the other hand, given a system in 

which we aren’t sure of the requirements at all, and 

we expect there will be new requirements and/or 

 
‡ There have been some notable attempts to implement more rigor. One of the more interesting is “Designing 

Systems for Adaptability by Means of Architecture Options,” by A. Engel and T. Browning (2006). Also consider 

the truly excellent, “Fundamentals of Decision Making for Engineering Design and Systems Engineering,” by G. 

Hazelrigg (2014). 

significant changes to the requirements at some 

point in the system lifecycle, investing in flexibility 

is the obvious choice.  

The upshot is that there is a sort of “tipping point” 

that must be determined for each application or 

domain in which Principled Design as the right 

overarching methodology gives way to Designing 

for Principles. The argument in this paper is that 

developing a resilient architecture for the space 

enterprise is an excellent example where this tipping 

point has been reached. 

Of course, this begs the question, “How can we 

actually employ DfC to achieve our goals?” How 

does the concept really work? After all, the SE 

Principled Design process may have its weaknesses, 

but at least we’re familiar with it, and we know it 

can produce some amazing capabilities. 

These are fair questions. The truth is DfC is 

certainly not nearly as mature as traditional SE 

methodologies (which have at least a 50-year head 

start). DfC is really the kernel of an idea—the basis 

for thinking about capability development in a new 

way that offers some stark contrasts to traditional SE 

approaches employed by the DOD. Although some 

important principles have been captured above, the 

task remains of translating these into a structured, 

repeatable methodology to guide capability 

development.‡ 

This paper attempts to partially remedy that, 

extending and generalizing the core concept of DfC 

into a framework to inform development of 

capabilities across the DOD space enterprise. This 

framework is referred to as “Designing for 

Principles” or simply “DfP.” The essence of the DfP 

framework is captured via three pillars— 
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1. Don’t Be Obsessed with Requirements 

2. Keep the Big Picture in Mind  

3. Embrace and Understand Uncertainty 

Each of these pillars will be explored in the sections 

that follow, to include explaining the meaning of the 

pillar, discussing rationale for its inclusion, and 

highlighting salient differences with the traditional 

Principled Design approach. Several examples are 

provided to illustrate the purpose and power of these 

pillars, but the intent is to keep the discussion fairly 

general. As noted at the outset, specific, actionable 

recommendations on how to implement DfP across 

the space enterprise are deferred to the subsequent 

paper. 

When Does DfP Apply? 

Before addressing the pillars, let’s first clearly 

establish the scope of DfP as a potential 

methodology. Thus far, this discussion has mostly 

related to systems. The question naturally arises, 

“How does the DfP concept apply to architectural 

development and design?” 

Simply stated, every argument for the DfP approach 

to capability development is more compelling for 

higher levels of design abstraction, whether that be 

an enterprise architecture or a systems-of-systems 

(SoS) application. During early architecture 

development, the time to system fielding is greater, 

requirements are less well understood, and the 

design space is much broader. This is the point in 

time with the largest number of variables with the 

greatest amount of uncertainty. Recalling the notion 

of a “tipping point,” if DfP makes sense during the 

system design phase, then it makes even more sense 

during the architecting phase.  

In his book, System of Systems Engineering, 

Jamshidi observes that traditional SE assumes far 

more stability than is warranted in today’s world, 

and these assumptions are particularly problematic 

at the architecture level: 

…twenty-first century engineering is 

witnessing an unprecedented change in the 

way we conceive, develop, field, and 

sustain systems. Many of the premises 

underlying the traditional systems 

engineering (SE) strategies are no longer 

valid. Traditional SE has been focusing on 

developing stand-alone systems with stable 

architecture and static technology base in 

which improvements were slow and very 

costly. These strategies incorrectly assume 

that all of the systems of systems 

requirements are known in the beginning of 

the development process and can be frozen 

in time or assumed to be stable. The 

traditional SE strategies also wrongly 

assume that the concepts of operation and 

various technologies used for constructing 

today’s SoS are static and are subject to 

minor future changes.8  

Another reason why DfP is well suited to higher-

level architecting is because there are certain non-

functional requirements that can best be assessed 

and delivered at the architectural level. Survivability 

(a concept closely related to resilience, to be 

addressed later) is a good example of this. If we wish 

to maximize the persistence of capabilities provided 

by the U.S. space enterprise, there are certainly 

some design strategies that pertain to individual 

systems or nodes (e.g., maneuverability, shielding, 

physical barriers, etc.). However, the truly powerful 

design strategies come into play at the SoS or 

enterprise architecture level (e.g., distribution, 

disaggregation, proliferation, entanglement, etc.). 

Finally, the use of DfP at one level of design does 

not require its use at all levels. To wit, DfP is 

scalable. It may be used at the architectural level (or 

the Systems-of-Systems level), but traditional SE 

methods may still be used at the system level.  
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Don’t Be Obsessed with Requirements 

Why, sometimes I've believed as many as 

six impossible things before breakfast. 

—Lewis Carroll 
Through the Looking Glass  

 
In traditional SE (especially as practiced within the 

DOD), requirements are the bedrock upon which 

everything else rests. DfP acknowledges that 

requirements are important, but it also harbors a 

healthy dose of skepticism for them, given 

established problems with overly rigid 

specifications and the inherent failings of 

requirement decomposition. Further, DfP also 

recognizes that that bedrock is malleable because 

requirements are, in reality, almost never stable.  

Logically, the more 

requirements we have, 

the more opportunity 

there is for 

“requirements creep” 

and/or requirement 

failure. Further, each 

time there is a 

requirement failure—or 

just the perceived risk of 

requirement failure—

there are significant resources expended in coping 

with that. This slows us down and costs us money. 

Also, the greater the number of requirements, the 

greater the likelihood that we make a mistake in 

decomposition. This means that we may focus our 

efforts on the wrong goals and/or not include the 

right ones. Finally, each time we decompose a 

requirement, we run the risk of optimizing sub-

elements of the system at the expense of the overall 

system. For all of these reasons, DfP encourages the 

use of fewer requirements or the use of objectives in 

lieu of rigid requirements. 

In practice, this also means that DfP tends to 

emphasize flexibility over functional requirements. 

Take a moment to digest this deceptively simple 

statement, as it could be considered blasphemy. To 

many SE practitioners, nothing is more important 

than ensuring we provide a capability that meets a 

validated set of functional requirements. However, 

it may be less contentious when couched this way: 

DfP prioritizes meeting long-term (unknown) 

requirements over meeting short-term (known) 

requirements.  

In the end, it’s really a question of robustness to 

change vice slavery to specification. DfP is 

essentially posing the question, “Does it make sense 

to expend enormous time and resources carefully 

specifying and decomposing large numbers of 

stringent requirements under the assumption that 

those requirements are 

not only fully valid now, 

but will remain so over 

the lifecycle of a defense 

system that typically 

spans decades?” The 

DfP answer is a 

resounding “no,” at least 

under conditions of high 

complexity and extreme 

uncertainty. 

Objectively Speaking 

So what would it actually mean to capture fewer 

requirements or to use objectives in lieu of 

requirements? The most effective point in the 

requirements process to reduce the number of 

requirements is at the apex of the decomposition 

effort—i.e., Key Performance Parameters (KPPs). 

This is because the decomposition process spawns 

requirements on an exponential basis. 

Consequently, having fewer KPPs, even one or two 

fewer, could easily result in hundreds of fewer  

DfP prioritizes meeting long-term 

(unknown) requirements over 

meeting short-term (known) 

requirements. 
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system specification requirements. There is even an 

argument to be made that the right number of top-

level requirements§ is zero, at least in certain 

situations. After all, how many requirements did the 

Internet have (see upcoming section for a short case 

study on the Internet)? 

If prioritizing flexibility over functional 

requirements is blasphemy, then not having 

requirements at all might be viewed as high treason. 

How can we possibly develop a sophisticated 

defense capability without requirements? After all, 

if we don’t have requirements, what will we 

decompose, allocate, analyze, argue about, test, 

verify, change, and ultimately fail to meet? Okay, 

that rhetorical question was, perhaps, unduly 

cynical. Here’s a fairer question (or compound 

question): Without requirements, how will we know 

that what is being developed will have value to the 

end user, and how will we hold the developer 

accountable for delivering something of value? 

The answer is by using objectives. And this isn’t as 

crazy as it sounds. The basic idea is prevalent in 

other disciplines, including education (e.g., 

objective-based learning or outcome-based 

education), finance (e.g., objective-based 

investing), and business operations (e.g., objective-

based management). By specifying objectives in 

lieu of requirements as part of our capability 

development strategy, we can convey what it is we 

really wish to achieve while simultaneously greatly 

expanding the design tradespace we have to work 

with, both now and across the lifecycle. This can be 

a particularly good match for developments 

entrenched in uncertainty, as it is an intrinsically 

flexible approach to foster flexibility.  

Consider this example. Suppose someone knows 

they’re overweight, and their objective is to lose 

 
§ The “top-level” qualifier is critical to this argument. It’s one thing to have a latency objective of 60 minutes and 

then achieve 80 minutes; it’s quite another to specify an interface connection be at least 5 cm and then provide a 

part that is only 4 cm. 

body fat. To achieve this, they might impose a 

requirement on themselves to reduce their weight by 

20 pounds over the next six months. Assume that 

three months later—after increased exercise and 

decreased ingestion of Skittles—they’ve lost seven 

pounds. Is this a good outcome?  

From a traditional requirements management 

mindset, things are not going well. It does not appear 

this person is on track to achieve their weight loss 

requirement, and so they might be inclined to give 

up and try something new. But, in reality, this 

person has likely made progress toward their 

objective; i.e., they’ve almost certainly reduced 

their body fat.  

Now let’s suppose that—at the three-month mark—

this hypothetical someone suddenly decides to begin 

training to be an American Ninja Warrior, and they 

wish to develop a lot more muscle mass. After three 

additional months of intense training and bland 

protein shakes, their weight does not reduce further, 

but they find they have a significantly lower body 

fat percentage than ever before. After six months, 

this person weighs only seven pounds less than they 

did originally. Is this a good outcome? 

If we only go by the requirement of losing 20 

pounds, then they have failed. If, instead, we go by 

the objective of losing body fat, then they have 

succeeded. And because they prioritized their 

ultimate objective (i.e., body fat reduction) above 

the derived requirement (i.e., weight loss), they had 

the flexibility to shift from losing weight to gaining 

muscle once something unexpected happened (like 

the decision to try out for American Ninja Warrior).  

This scenario is rather trivial, but it does illustrate 

the potential of employing an objective-based 

approach. It allows us to remain focused on the  
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outcome that matters while simultaneously 

encouraging incremental progress toward that 

outcome even if lower-level requirements aren’t 

being met.  

Finally, it’s important to note that an objective-

based approach to acquisition should not be 

confused with the much-maligned capability-based 

planning prevalent during the early 2000s. 

Prioritizing objectives over requirements is not an 

excuse for gold-plating. It is not free license to build 

the coolest, most awesomest weapon ever just 

because we can. Objective-based simply means 

constraining the solution space to what really 

matters and eliminating—or at least greatly 

reducing—requirements where possible in order to 

increase flexibility. 

Non-Functional Requirements (NFRs) 

Having too many requirements can be cumbersome 

and counterproductive, slowing us down and 

constraining our solution space. But the more 

insidious problem may be having the incorrect kind 

of requirements. At present, the DOD is far more 

focused on functional (i.e., technical performance) 

requirements than non-functional requirements (i.e., 

the “-ilities”). For space system acquisitions in an 

increasingly threatened operating environment, this 

is almost certainly the wrong focus. 

We built exquisite glass houses in a world 

without stones. 

— Heather Wilson, Secretary of the Air Force (2018)9 

As long as capability developers remain consumed 

with functional requirements, the systems they field 

are likely to remain locked into the vicious cycle of 

increasingly exquisite point solutions and longer 

development timelines. This results in greater  

vulnerability of critical capabilities and an 

increasingly brittle space architecture. The Air 

Force recognized this problem, which is exactly 

why the seventh and eighth satellites of the Space-

Based InfraRed System (SBIRS) program were 

cancelled in 2018, replaced with a successor system 

intended to be more survivable.10 The thinking 

behind this decision was essentially this: no matter 

how capable a system is during peacetime, if it’s 

likely to not be available when it’s needed most (like 

during a major conflict), then there’s little point in 

having it. 

We need more of this kind of thinking. We need to 

pivot the focus away from functional requirements 

toward non-functional requirements (NFRs). Truly 

shifting the paradigm will mean that leadership is 

willing to routinely sacrifice some technical 

performance capability in order to enhance the 

survivability of that capability. That may mean we 

employ smaller, less capable, primary satellite 

payloads in order to make room for warning sensors 

or increased fuel reserves. It may mean accepting 

the implicit performance offsets associated with 

using a standard interface for modularized satellite 

buses and launch vehicles. It may mean incurring 

latency in order to diversify capabilities among 

commercial or Allied partners. It may mean that a 

particular satellite ground station is less able to 

support a single mission function, but better able to 

support a broader range of mission functions. 

To cope and thrive within this complex 

environment, DfP calls for a greater commitment to 

NFRs, prioritized at least as highly as technical 

performance requirements. This is not only the best 

way to counter known threats in a complex 

environment—it’s also the best way to respond to 

unknown threats. 
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Prediction is not the only way to confront 

threats; developing resilience, learning how 

to reconfigure to confront the unknown, is a 

much more effective way to respond to a 

complex environment. 

—General Stanley McChrystal 
Team of Teams11 

Acquiring the Internet 

The Internet is an excellent case study of the power 

of DfP, especially vis-à-vis traditional conceptions 

of requirements. Viewed from the perspective of a 

major system development, the Internet has to be 

regarded as an extremely impressive 

accomplishment. Of relevance to this discussion, it 

was achieved without any formal requirements and 

with intentional emphasis on non-functional 

requirements. 

Most people likely are aware the modern Internet 

had its origins as a Defense Advanced Research 

Projects Agency (DARPA) research effort. DARPA 

had a simple, focused objective: establish 

communication protocols for networked computers. 

They approached this in a way that exemplifies DfP. 

They focused on a single objective instead of a 

litany of requirements, and the objective was related 

to an -ility (i.e., interoperability, in the form of an 

interface standard) instead of a performance 

parameter. The result was the foundational 

Transmission Control Protocol/Internet Protocol 

(TCP/IP) suite. 

Eventually, a number of government agencies 

invested in backbone networks that conformed to 

the TCP/IP standards. They, too, saw promise in the 

concept, but none of them created a formal program 

with a plethora of formal requirements. With the 

infrastructure and the interfaces established, 

incentives were in place for the nascent Internet to 

expand rapidly. Government entities (state and 

federal), educational institutions, and various 

private sector companies took advantage of this 

networking infrastructure, expanding the reach of 

the Internet by filling in local and regional 

connections across the globe.  

And because of certain design principles pursued at 

the outset of this effort (e.g., interoperability and 

extensibility), it was relatively easy to accommodate 

another key change, i.e., the incorporation of 

additional protocols, such as the Open Systems 

Interconnection protocols. This allowed for the 

inclusion of functionality that could not possibly 

have been foreseen originally (e.g., user-friendly 

browsers, electronic mail, hyperlinking, web-based 

applications, etc.). This flexibility was critical to the 

stunning success of the Internet, though perhaps also 

the bane of many parents of young children. 

And although the Internet is subject to local outages 

and targeted denial of service attacks, it is 

practically impossible to take down the entire thing. 

It is almost certainly the most resilient, major system 

that humans have ever created. This is a remarkable 

achievement that some are too prone to attribute to 

luck. Though luck played a part, it was also the 

result of some smart, deliberate design decisions— 

The Internet, and consequently its 

backbone networks, do not rely on central 

control or coordinating facilities, nor do 

they implement any global network 

policies. The resilience of the Internet 

results from its principal architectural 

features [emphasis added], most notably 

the idea of placing as few network state and 

control functions as possible in the network 

elements, and instead relying on the 

endpoints of communication to handle 

most of the processing to ensure data 

integrity, reliability, and authentication.12  

Contrast this Designing for Principles approach with 

the Principled Design approach. Imagine if the DOD 

had established a program early on to develop the 



 

10 

capabilities we see in today’s Internet. These are the 

types of KPPs we might expect: 

 The system shall support at least three billion 

unique users on a daily basis 

 The system shall support at least one billion 

unique content sites 

 The system shall support exchange of at least 

200 million rich text messages every minute 

 The system shall allow users to access sites and 

content via any device that conforms to a few 

simple communication protocols 

 Users shall be able to use a protocol-conforming 

device to send 1MB of data via the system to any 

protocol-conforming device anywhere on earth 

in less than one second 

 The system shall allow for near-instantaneous 

search of all hosted content 

 The system shall support secure exchange of 

sensitive data 

 The system shall achieve 99.9 percent functional 

availability 

If these had been the KPPs, we could reasonably 

expect that this program would either: 

 Not have delivered on even a small fraction of 

the performance requirements 

 Have been cancelled 

 Be the most expensive program in the history of 

civilization 

And truthfully, it probably would have managed to 

be all three. 

At best, the Principled Design approach would have 

been cost-prohibitive, taken decades to implement, 

and/or delivered only a subset of the performance 

attributes. On the other hand, the DfP approach 

gave us greater performance and resilience than we 

could have ever imagined possible. Granted, no one 

could have envisioned the full potential of the 

Internet at the outset. But that’s precisely the point. 

The Internet was poised to take advantage of 

opportunities that could not possibly have been 

foreseen because the developers deliberately chose 

to emphasize objectives over requirements and 

prioritize NFRs over technical performance.  

The DfP approach may be sacrilege, but it is 

potentially transformative sacrilege. 

Keep the Big Picture in Mind 

“Would you tell me, please, which way I 

ought to go from here?” 

“That depends a good deal on where you 

want to get to,” said the Cat. 

“I don’t much care where—” said Alice. 

“Then it doesn’t matter which way you go,” 

said the Cat. 

— Lewis Carroll  
Alice’s Adventures in Wonderland 

One of the more interesting aspects of NFRs is that 

many of them can best—and sometimes only—be 

achieved via a broader, more strategic approach. 

Case in point is resilience. This is a concept that is 

referenced extensively in space architecture 

discussions; it is also a decidedly architectural 

attribute. In DOD space policy, resilience is defined 

as, “the ability of an architecture [emphasis added] 

to support the functions necessary for mission 

success…”13 In joint-capability parlance, resilience 

is the “ability of the collection of systems [emphasis 

added again] to support the functions necessary…” 

and applies to “the overall force (broader than a 
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single system architecture) to complete the mission 

despite the loss of individual platforms.”14 

These definitions of resilience make it clear we’re 

not talking about a single system, but rather a 

systems-of-systems architecture or an enterprise 

architecture. This means that resilience is not 

something an individual program is responsible for. 

This is not to say that system developers have no 

role in delivering a resilient architecture. There are 

certainly many smart things that can be done at the 

system level to contribute to the overall resilience of 

the enterprise space architecture. Examples include: 

 Apply radiation shielding to satellite vehicles 

 Erect physical barriers around ground facilities 

 Hide, or otherwise disguise, the location and 

purpose of the ground facility 

 Increase antenna transmission power 

 Implement communication link frequency 

hopping 

 Maintain network antivirus protection 

But the really powerful resilience strategies can only 

be implemented—and meaningfully assessed—at 

the enterprise architecture level. For instance: 

 Standardization of interfaces (satellite, launch 

vehicles, ground systems, etc.) 

 Distribution of capabilities across multiple 

systems 

 Proliferation of systems across multiple orbital 

regimes or geographic locations 

 Entanglement of capabilities with commercial or 

Allied systems 

 Provisioning of deployable, integrated defense 

force packages  

 Establishment of rapid deployment (e.g., rapid 

launch) and sustainment (e.g., on-orbit 

servicing) capabilities 

Fundamentally, an enterprise architecting approach 

that emphasizes DfP shifts the focus from the 

resilience of a particular system to the resilience of 

an overall capability. This allows capabilities to be 

apportioned among systems in a way that achieves 

strategic levels of survivability (perhaps the most 

important NFR of all for defense systems) simply 

not attainable on a system-by-system basis. This 

approach recognizes that doing what’s best for the 

entire space enterprise often is incompatible with 

doing what is best for individual systems. This 

notion is the essence of Keep the Big Picture in 

Mind, the second pillar of DfP. 

Capabilities, Not Systems  

Because the more you optimize elements of a 

complex system … for some specific goal, 

the more you diminish that system’s 

resilience. A drive for efficient optimal state 

outcome has the effect of making the total 

system more vulnerable to shocks and 

disturbances. 

— B. Walker and D. Salt  
Resilience Thinking15 

 

Standard decomposition practices often result in the 

optimization of the pieces rather than the whole, and 

the more complex a system is, the greater the risk of 

optimizing the wrong thing. Relative to capability 

development strategies, we need a way to not lose 

focus on the mission capabilities needed by the 

warfighting community. Arguably, we do not have  
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such a framework at present. Figure 1 depicts (in a 

greatly simplified manner) the current relationship 

between capabilities and systems across the space 

enterprise. 

The process starts with the identification of a 

general mission capability need. For the space 

enterprise, this includes things like Missile 

Warning, Environmental Monitoring, and Satellite 

Communications, et al. From there, we establish 

performance measures that are assigned to a 

particular system development activity. Those 

small, light brown blobs represent a notional spider 

chart of top-level requirements (e.g., KPPs) where 

we capture Missile Warning performance measures 

for SBIRS and another set for DSP (Defense 

Support Program) and so on (“GOES” is  

Geostationary Operational Environmental Satellite; 

“AEHF” is Advanced Extremely High Frequency; 

“WGS” is Wideband Global SATCOM). As each of 

these systems is developed and fielded, we can think 

of the resulting architecture as an equation: the sum 

of the individual system capabilities is equivalent to 

the capabilities of the entire space enterprise. In this 

way, we have achieved a space architecture that is 

the fact-of-life, non-deliberate consequence of 

aggregating the constituent systems. 

Note that this process effectively precludes 

enterprise architecting, as it makes it virtually 

impossible to optimize for anything other than 

individual systems.  

  

 

Figure 1: Current system-centric approach. 
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Consider, instead, the alternative process in  

Figure 2; this reflects the DfP-driven approach. We 

start with the same mission capabilities,** but now, 

instead of developing performance measures that 

are intended to guide system development, we stay 

at the capability level. We document what 

performance we need relative to that entire mission 

capability (i.e., “System Performance Measures” are 

replaced with “Capability Performance Measures”). 

Notably, there is no consideration, yet, of what 

specific systems will deliver those capabilities. The 

sum of all the needed capabilities across all the 

mission areas represents the complete objective for 

space enterprise capabilities. We next use that 

 
** An even more innovative approach would be to reevaluate the suitability of these mission capability categories; a 

different capability ontology could yield revolutionary solutions. However, that goes beyond the scope of the 

current discussion. 

objective as the basis to develop an enterprise 

architecture, one that takes into account all needed 

capabilities simultaneously and balances them 

against one another, as well as NFRs, to ensure 

optimization of the top-level objectives.  

This is a subtle, but crucial, difference. This second, 

capability-centric approach allows the architecture 

to be realized through the deliberate acquisition of a 

set of systems (and services) that support the 

capability performance measures without having to 

build a series of exquisite, monolithic systems that 

may be excellent point solutions, but not-so-

excellent enterprise solutions. The result is likely to  

 

Figure 2: Proposed capability-centric approach. 
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include some systems that are still focused on 

supporting a single mission capability area (e.g., 

“System A”), but there will also be systems that 

support multiple capability areas (e.g., “System B”) 

in order to achieve greater efficiencies and realize 

enterprise architectural goals like proliferation, 

distribution, and disaggregation. 

Importantly, the proposed capability-centric 

approach also elevates derived, enabling capabilities 

(depicted as “Enabling Systems”). This allows for 

explicit support of cross-cutting capabilities like 

Launch, Data Transport, and Protection, all of which 

are not of direct concern to the warfighter, but are 

crucial to the success of other mission capabilities. 

These enablers may be best achieved via common, 

enterprise solutions instead of stove-piped, system-

specific solutions. Finally, by considering system 

capabilities in the aggregate, we can make smarter 

allocations of capabilities across the enterprise, 

involving contributions across not just the DOD, but 

also civilian, commercial, and Allied partners. 

To summarize the difference between the two 

approaches, think of the U.S. space enterprise as a 

group of wolves. Using this analogy, Figure 1 

represents the current situation (i.e., the Principled 

Design approach) where we have a number of lone 

wolves each hunting in their own territory using the 

techniques they’re good at. They may survive for 

some time scrounging for berries and small game 

while avoiding predators, but their odds of long-

term survival are not great as they have virtually no 

capacity to overcome adversity. 

Figure 2, on the other hand, represents the power of 

the wolf pack (i.e., DfP). They have unity of purpose 

and unity of effort. Here, all the wolves are working 

together in a coordinated fashion, complementing 

one another’s strengths and compensating for one 

another’s weaknesses to achieve gestalt. Consistent 

with Keeping the Big Picture in Mind, the survival 

of an individual wolf is largely inconsequential; it is 

the survival of the wolf species that matters. In this 

way, the pack of wolves are far more resilient to a 

wide range of threats, both known and unknown. 

Embrace and Understand Uncertainty 

If it was so, it might be; and if it were so, it 

would be; but as it isn't, it ain't. That's logic.   

—Lewis Carroll 
Through the Looking Glass  

 

Embracing Uncertainty, the third pillar of DfP, is all 

about recognizing uncertainty, accepting it, and 

treating it in a mathematically rigorous way. This 

may sound like a simple change in thinking, but it’s 

far from it. Truly accepting uncertainty would 

represent a momentous change in capability 

development because it has implications to virtually 

every aspect of the traditional SE processes. 

Relative to traditional conceptions of risk, DfP  

(1) has a diametric attitude toward considering it,  

(2) expands the scope of what should be considered, 

and (3) posits an alternative core purpose to 

managing it. 

The entire DfP mindset regarding uncertainty is 

drastically different. Whereas conventional SE 

necessarily abhors uncertainty, DfP thrives on it. 

This is largely attributable to the established positive 

correlation between uncertainty and the value of 

flexibility.16,17,18 So whereas Principled Design 

approaches risk as a reluctant participant, dismayed 

by the emergence of any new risk, and continually 

seeking to “mitigate” it wherever possible, DfP 

embraces uncertainty, knowing that every source of 

uncertainty serves as greater justification for 

investing in flexibility, to include from an overall 

affordability perspective.19,20 

Scope is the second key difference. The DOD risk 

management process typically only concerns itself 

with the downsides of uncertainty, ignoring all the  
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possible upsides, i.e., opportunities. DfP, however, 

inherently involves both positive and negative 

implications of uncertainty, whether we wish to 

thwart a new adversary threat (risk) or take 

advantage of a new technology advancement 

(opportunity). Thus, DfP is more than risk 

management—it’s actually uncertainty 

management. This distinction is important not just 

because both risks and opportunities must be 

accounted for in any robust valuation of tradespace, 

but also because it is often not clear whether a 

source of uncertainty is simply “good” or “bad.” 

Binary categorization of all uncertainty into one of 

these two buckets is a gross oversimplification that 

ignores how assessments can change over time. 

Lastly, and most importantly, the entire purpose of 

trying to manage 

uncertainty has a 

different focus under 

DfP. Put simply, the 

traditional risk 

management process is 

tactical in nature, while 

DfP uncertainty 

management is 

inherently more 

strategic. Programs that 

employ risk management are understandably 

consumed by things that can jeopardize their 

established cost, schedule, and/or technical baseline. 

These are important considerations to be sure, but 

what actually matters is that the joint warfighter is 

provided with the right capability at the right time. 

This realization leads to a reconception of risk, one 

that is based on operational capabilities instead of 

programmatics. 

Broadening our conception of risk management 

(again, really uncertainty management) to a 

strategic level also supports the second DfP pillar: 

Keep the Big Picture in Mind (the pillars should not 

 
†† Based on a standard binomial probability distribution 

be regarded as independent). Focusing on 

operational capabilities instead of system 

acquisitions reprises the central message of  

Figure 2, which urges us not to view the world 

through the lens of an individual program.  

To illustrate this point, imagine that we have 

chartered four programs to deliver a high-risk 

capability as part of a considered acquisition 

strategy to respond to a critical operational need. 

Assume that the chance of any individual program 

delivering this capability is estimated to be  

50 percent. This is certainly an extremely high risk 

from the perspective of any one of these programs, 

but as long as all aspects of each program are fully 

independent from one another, the chance that at 

least one program will succeed is nearly  

94 percent.†† In this 

example, the tactical-

level, program risk is 

unacceptably high, but 

the strategic-level, 

operational capability 

risk is easily tolerable. 

Moreover, failing to 

meet cost, schedule, or 

technical requirements 

does not necessarily mean that we have failed from 

an operational perspective. Suppose, instead, only 

one program was commissioned to respond to this 

operational need, and that it fell short on the 

technical requirement by 20 percent. Recall one of 

the messages from the first DfP pillar (Don’t Be 

Obsessed with Requirements) that we should focus 

on objectives in lieu of requirements. From an 

operational perspective, an 80 percent solution 

available right now is likely to be preferable to a 

100  percent solution five years from now.  

Regardless of the attitude toward uncertainty, the 

scope of it, or the purpose of managing it, the real 

This realization leads to a 

reconception of risk, one that is 

based on operational capabilities 

instead of programmatics. 
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key is how we regard it and characterize it in our 

capability development strategies. And this may be 

the biggest difference of all between Principled 

Design and Designing for Principles. Because 

traditional SE is not well suited for accommodating 

change, the natural tendency is to ignore or 

downplay sources of uncertainty. In a highly 

uncertain environment, this head-in-the-sand 

approach is the worst possible tactic. DfP, in 

contrast, acknowledges that uncertainty is a fact of 

life that can be understood—and sometimes 

exploited—as long as we are willing to confront it 

in a robust way. The rest of this section explains how 

this can be achieved. 

The Failing of Functional Availability 

DfP treatment of uncertainty can be understood by 

considering the widely used concept of satellite 

constellation functional availability (FA). This 

metric is often used as the principal basis for 

assessing the current and forecasted health of a 

satellite architecture and thus informing multi-

billion-dollar replenishment decisions. 

In this author’s younger days, he had a colleague 

who would often proclaim that “consistency is 

better than accuracy.” Anyone who has ever been 

involved in the development of satellite 

constellation FA numbers can likely attest to the 

truth of this aphorism. There are a lot of assumptions 

buried in the FA calculations that mask high levels 

of uncertainty. But the output product is generally 

achieved through a consistent methodology and has 

the benefit of being readily understood by senior 

leaders. As a result, the FA numbers are often 

viewed by decisionmakers as being more accurate 

and reliable than they really are. 

 

In recent years, the entire concept of satellite FA has 

(rightfully) come under scrutiny. The traditional FA 

metric only considers the probability of internal 

component failure as a result of reliability 

calculations and, to a small extent, naturally 

occurring threats. As Beauchamp notes, we need to 

expand the concept of FA significantly. To make FA 

a truly useful metric, we would need to consider all 

threats to required mission capabilities, especially 

artificial threats (i.e., bad guys doing bad things to 

our stuff).  

But this is easier said than done. In order to 

quantitatively analyze the risk of artificial threats, 

there are a number of questions that become 

relevant, including: 

1. Who could hurt us? 

2. How could they hurt us? 

3. Would they hurt us? 

4. How would we respond? 

These are sensible questions, but providing 

meaningful answers is a daunting endeavor, 

primarily because none of the answers can be known 

with certainty. The answers we would likely have  

The way we have acquired space systems for 

the past several decades was on the basis of 

something called “functional availability,” … 

That is an approach that might make sense in 

a benign environment but … that’s not the 

environment we find ourselves in anymore. 

— Winston Beauchamp, Deputy USecAF21 
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the most confidence in—those to questions one and 

two—would likely be based on intelligence 

estimates, which are still, well, estimates. But the 

uncertainty in those answers would be relatively low 

compared to our answers to questions three and 

four. Knowing what an adversary will do is 

extremely difficult to predict even in the best of 

circumstances, let alone during the fog of war. And 

knowing what our nation would do in response is 

not much clearer (care to guess how the U.S. would 

respond to every known threat from every known 

actor?). These large uncertainties translate to large 

probability distributions. And, of course, the degree 

of uncertainty will increase, exponentially, over 

time (care to guess how future political 

administrations will react?).  

And all of this ignores Black Swans‡‡ we cannot (or 

will not) predict such as disruptive technologies, a 

coronal mass ejection, or realization of the Kessler 

syndrome. Even with all 

of these challenges, we 

could construct some 

probability curves and 

try to convince 

ourselves they are 

authoritative. We could 

then conduct the 

statistical analysis that 

yields a discrete 

probability distribution 

of the expanded FA concept. But who, in good 

conscience, would try to sell this result as something 

remotely accurate or reliable? The sheer number of 

overlapping probability curves and associated large 

uncertainty ranges would render the output 

effectively meaningless. It would be sound and fury, 

signifying nothing.  

There are numerous, well-documented cognitive 

biases at play here, to include overconfidence effect, 

illusion of control, and planning fallacy, just to 

 
‡‡ Highly improbable, but highly consequential events that are often disregarded in planning and analysis 

name a few.22 But the real problem is more 

epistemological. As the collective community 

charged with developing space warfighting 

capabilities in a rapidly changing world, we need to 

acknowledge that there are some things we just do 

not know and that we cannot meaningfully 

characterize. This notion is deeply disturbing to 

some; nevertheless, it is true, and it is a fundamental 

reason why Principled Design is flawed. 

Complexity and Deep Uncertainty 

In casual parlance, complexity is a synonym for 

complicated. However, within the fields of systems 

theory and operations research, the two concepts are 

distinct.  

A “complicated” system will certainly consist of 

many parts and/or processes, and may have many 

intricate interactions. But the elements are finite, 

and their interactions are relatively few in number 

and can be characterized 

such that system outputs 

can be reliably predicted 

based on inputs. 

Examples of complicated 

systems include software 

programs, combustion 

engines, and 3D printers.  

Systems regarded as 

“complex,” on the other 

hand, not only tend to have more parts and/or 

processes but, more crucially, the number of 

interactions is generally much greater, and the 

nature of those interactions is often nonlinear and 

unpredictable. Knowing the inputs does not allow us 

to determine the output. Examples of complex 

systems include local weather, national economies, 

and insect swarms. 

Relevant to the discussion at hand, complicated 

systems can generally be decomposed whereas 

As the collective community charged with 

developing space warfighting capabilities in 

a rapidly changing world, we need to 

acknowledge that there are some things we 

just do not know and that we cannot 

meaningfully characterize.  
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complex systems cannot. The gestalt of complex 

systems means the holistic behavior cannot be 

reliably discerned by summing the parts. In other 

words, we could fully characterize all of the 

constituent elements of a 3D printer and how they 

fit together so that someone else could recreate one 

that theoretically performed just like the original. 

The same cannot be said for a localized 

thunderstorm. The complexity of all the constituent 

air molecules, thermal radiation, and flow dynamics 

(and the interactions between) is simply too 

complex. Even if we knew all the characteristics of 

all the constituent molecules in the region (pretend 

it’s a closed system), we cannot possibly know the 

full characteristics and behavior of the 

thunderstorm. 

 

An essential element of complexity is an absence of 

knowledge and a high degree of uncertainty. This 

high degree of uncertainty is sometimes referred to 

as “deep uncertainty.” This term is being used 

increasingly often in the decisionmaking domain to 

describe situations in which we have virtually no 

idea what the probabilities are associated with 

various inputs and factors (in other words we have a 

lot of uncertainty about the uncertainty) or how 

these relate to outputs and outcomes.24 Deep 

uncertainty recognizes that these types of situations 

should not be treated in the same quantitative 

manner as your run-of-the-mill uncertainty 

problems where some degree of characterization is 

feasible.  

This notion of deep uncertainty has given rise to an 

alternate decision framework known as “robust 

decision making” (RDM). RDM is better suited to 

deal with uncertainty about uncertainty as it rejects 

single probability distributions in favor of sets of 

probability distributions, emphasizes robustness 

over optimization, and provides a more explicit tie 

to foundational assumptions in order to improve 

decisionmaking. RDM is a natural companion to 

DfP as both concepts inherently embrace 

uncertainty. 

Returning to the FA example, a fundamental 

question to answer is, “How do we go about 

determining the best constellation design?” Or, put 

another way, “In the face of myriad natural and 

artificial threats, what constellation architecture has 

the best chance of providing the capabilities we need 

when we need them?” The only thing certain here is 

that this is not a trivial question. 

In attempting to answer this question, one option 

would be to employ the time-honored Principled 

Design approach along with the conventional 

treatment of uncertainty that assumes we are only 

dealing with complicated systems. Most readers are 

probably familiar with the basic approach.  

First, we would conduct an Analysis of Alternatives 

that seeks to optimize constellation performance 

based on a set of fixed evaluation criteria (e.g., cost, 

schedule, technical performance), informed by 

“known” factors (e.g., threats, technology, market 

conditions), each with “known” certainty. We 

would then apply our evaluation criteria to the  

Complexity produces a fundamentally 

different situation from the complicated 

challenges of the past; complicated problems 

required great effort, but ultimately yielded to 

prediction. Complexity means that, in spite of 

our increased abilities to track and measure, 

the world has become, in many ways, vastly 

less predictable. This unpredictability is 

fundamentally incompatible with reductionist 

managerial models based around planning 

and prediction. The new environment 

demands a new approach. 

—General Stanley McChrystal  

Team of Teams23 
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proposed architectures across a set of “known” 

future scenarios informed by the factors with 

“known” probability distributions. We would then 

arrive at a single, preferred design that performs the 

“best.” This would arguably be the “right” decision; 

however, it would be based on our knowledge today 

and a misguided confidence in the accuracy and 

stability of that knowledge. (And yes, that was a lot 

of scare quotes for one paragraph.) 

Option two would be to assume system complexity 

and employ the principles of DfP and RDM. In this 

approach, we would consider design solutions in the 

real world, a world where there is not just variance 

in relevant factors, evaluation criteria, and 

scenarios, but the nature of that variance defies 

meaningful quantification. This methodology would 

likely not result in a single point-solution design that 

is optimized for current conditions, but instead 

provides a “family” of design options (an 

“architectural vector,” if you will) that would be 

expected to perform the best over the range of 

possible futures and can most readily adapt and 

continue to deliver value as circumstances change.  

In the end, we must recognize that most of our world 

is much more complex (in the strict sense of the 

word) and much more unpredictable than most of us 

are comfortable with or would care to admit. And 

this is certainly true in the contemporary space 

environment. The best way to cope with this is by 

being as flexible as possible and keeping our options 

open so we’re better equipped for whatever lies 

beyond the horizon. 

Architectural Tradespace 

To better illustrate the difference between these two 

approaches, and the power of DfP in an uncertain 

environment, consider Figure 3. Each colored box 

(numbered 1 through 5) is intended to represent a 

separate candidate architecture. The total area of 

each box correlates to the expected value of that 

candidate architecture. The light red rectangle 

marked “T” depicts the threat environment we 

currently anticipate. The degree of overlap a given 

candidate architecture has with the red threat box 

represents the extent to which that architecture can 

continue delivering value in the face of that threat. 

In sum, the larger the box, the better, and the more 

overlap with “T,” the better. 

 

Figure 3: Candidate architectures (simplified). 

With just this information to go on, it would seem 

that candidate architecture #1 is clearly superior 

because the size of box #1 is not only significantly 

larger than any of the other boxes, but it almost 

entirely encompasses the anticipated threat. 

Although the combined area of boxes #2 through #5 

is equal to the area of box #1 (trust me, I’ve done the 

math), each individual box is significantly smaller, 

and only boxes #2 and #4 overlap with the threat at 

all (and then only to a limited extent).  

So our work is done here, right? Let’s go with 

candidate architecture #1 and be on our way. 

Not so fast. There are some other pieces of 

information that you should take into account before 

you make your decision. The first thing to know is 

that the nature of the threat is highly uncertain; in 
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other words, the red “T” box can vary significantly. 

For simplicity, let’s assume that it will remain the 

same size and shape, but may slide horizontally 

anywhere between X0 to X1 with equal probability.  

The second thing to know is that candidate 

architectures #2 through #5 are all closely related, 

such that it is relatively easy to transform certain 

facets of one architecture into one (or more) of the 

others late in the design process, or even after 

implementation (this is what the overlapping areas 

represents). However, we must commit to a general 

path now: either Option “A,” corresponding to 

candidate architecture #1 or Option “B,” 

corresponding to the “family” of candidate 

architectures #2 through #5.  

These additional pieces of information are depicted 

in Figure 4. Assuming the costs are the same, which 

option is better? It’s not so clear anymore. On the 

one hand, Option A still performs the best as long as 

we assume that the threat environment remains 

constant or moves left toward X0. On the other hand, 

movement of the threat toward X1 quickly makes 

Option B better with respect to its improved threat 

response. In addition, there is clearly inherent value 

in being able to rapidly revector between options #2 

through #5. Logically, if a thinking adversary 

observes us advancing toward a particular candidate 

architecture, they are more likely to counter with 

threats that exploit weaknesses in that architecture. 

Option B gives us more tradespace to respond while 

simultaneously complicating the adversary’s design 

calculus. 

It should be clear that Option “A” is a proxy for the 

Principled Design approach, whereas Option “B” is 

the DfP approach. Traditional SE wants to nail 

down the requirements and start working toward the 

design solution as soon as possible. DfP, on the 

other hand, seeks to maintain options for multiple 

design solutions as long as possible and be poised to 

move between them should circumstances change. 

There is a solid argument that Option B is the 

smarter way to go regardless, but that argument 

becomes increasingly compelling the more 

uncertainty there is regarding each parameter we 

considered, whether it be the number of candidate 

architectures, the value of those architectures, the 

nature of the threat environment, or the extent to 

 

Figure 4: Candidate architectures (Not so simplified). 
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which the threat environment may change. 

Moreover, Option B recognizes the fact that the 

design process is never truly done, but is a never-

ending series of design re-vectors.  

This is the essence of capability fluidity. DfP 

fundamentally assumes that genuine resiliency does 

not come from picking one optimal future 

architecture now; it comes from the ability to 

continually adapt the architecture across a range of 

future needs and threats, many of which we cannot 

reasonably predict today. 

Principled Design vs. Designing  
for Principles 

To better appreciate the salient differences between 

Principled Design and Designing for Principles, it 

may be useful to see a side-by-side comparison of 

the two. If so, Table 1 is just for you. 

In terms of specific design principles, the emphasis 

of DfP, not surprisingly, is on strategies like 

component modularity, physical component 

distribution, functional disaggregation, and 

implementation/adoption of open protocols and 

standards. Table 2 shows what that might look like 

in the context of space systems. 

Summary of Designing for Principles 

I know who I was when I got up this morning, 

but I think I must have been changed several 

times since then. 

— Lewis Carroll  
Alice’s Adventures in Wonderland 

Design for Changeability (DfC) was an idea 

introduced over a decade ago. The core premise is 

simple, but potentially transformational: the useful 

life of virtually every product or system is 

constrained by its inability to adapt to change. The 

logical extension of this insight is that if we are to 

sustain the utility of a system over a prolonged time 

period, we must design for changeability; i.e., 

design the system such that it can better 

accommodate change. According to DfC literature, 

this includes a host of specific non-functional design 

strategies such as flexibility, adaptability, and 

agility, as well as the adoption of design principles 

like simplicity, independence, modularity, 

scalability, and redundancy. 

This paper introduces the concept of Designing for 

Principles (DfP), which amplifies and extends the 

basic tenets of DfC with the intent of making it 

implementable as a capability development 

methodology across the DOD space enterprise. 

Unlike the traditional DOD implementation of SE, 

which is generally requirement-based, system-

centric, and driven primarily by technical mission 

performance, DfP is objective-based, capability-

centric, and driven primarily by design principles. 

Although the proposed DfP approach is still far from 

a formal methodology, it does provide a more 

structured and actionable framework for use in 

developing and fielding DOD capabilities. This is 

achieved, in part, through the establishment of three, 

interrelated pillars, which were described in detail 

and related to development strategies across the 

space enterprise. These pillars are summarized as 

follows: 

 Don’t Be Obsessed with Requirements. Reduce 

the total number of requirements, use objectives 

in lieu of requirements, and prioritize non-

functional requirements over functional 

requirements. 

 Keep the Big Picture in Mind. Emphasize the 

broader perspective of capabilities over systems 

and extend this thinking to all facets of 

development, including performance, resilience, 

and risk. 

 Embrace and Understand Uncertainty. 

Uncertainty is not to be feared; recognize that  
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Table 1: Principled Design vs. Designing for Principles 

Design Function or Attribute 
“Principled Design” 

(Traditional SE) 
“Designing for Principles” 

(Propose Framework) 

Technical Performance Optimized for known 
functional/performance 
requirements; best option if current 
circumstances do not change and 
assumptions remain valid 

Reduced performance relative to 
current circumstances/assumptions, 
but generally superior performance 
for broader range of possibilities; 
emphasizes non-functional 

requirements (i.e., “-ilities”) 

Requirements Large number, specifying as much 
as possible, including thresholds of 
acceptable performance; 
overarching question is “Do we have 
everything we need?” 

Fewer in number, or not used; 
specify only what matters and 
prioritize objectives over traditional 
requirements; overarching question 
is “Do we need everything we 
have?” 

Approach to Uncertainty Eschews uncertainty and pursues 
limited risk management that is 
largely tactical and acquisition-
based 

Embraces uncertainty and engages 
in full uncertainty management that 
is more strategic and operationally 
based 

Interfaces Highly integrated with tight coupling 
between elements; functionally 
monolithic; intra-system interfaces 

are the focus 

Modular/interoperable with loose 
coupling between elements; 
functionally disaggregated; inter-

system interfaces are the focus 

Architectural Focus Typically, on major systems; 
assumes that if all systems meet 
their allocated requirements, the 
enterprise will perform as the sum of 

its parts 

May be at any level, but typically on 
SoS or the enterprise; assumes 
emergent behavior and recognizes 
that certain “-ilities” can generally 
best (or only) be realized at the 
enterprise level 

Resilience to Known Threats Moderate; survivability strategies 
tend to be system-centric, focusing 
on point-solution defendability 

Lower from the perspective of an 
individual system, but higher from 
the perspective of the overall 

capability 

Resilience to Unknown Threats Extremely low (only by pure chance) 
because approach is inherently 
threat-centric 

Moderate; flexible implementations 
foster ability to survive broader 
range of threats, even if not 
anticipated; approach is more threat-

agnostic 

Summary Reactive, downplays uncertainty and 
assumes stability in resources, 
requirements, and threats; emphasis 
is on near-term, exquisite technical 
performance and efficiency 

Proactive, embraces uncertainty and 
expects the unexpected; emphasis 
is on networked adaptability, 
capability fluidity, resilience, 
balanced with enduring “good 
enough” technical performance 
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Table 2: Principled Design vs. Designing for Principles (Space System Version) 

Design Element 
Traditional SE 

“Principled Design” 
DfP-based Approach 

“Designing for Principles” 

Architecture Fundamental architectural 
characteristics (e.g., constellation 
size, orbital characteristics, ground 
station locations) are established as 
early as possible to constrain design 
problem; difficult to modify 
architecture during development and 

operations. 

Fundamental architectural 
characteristics are not fixed or are 
determined as late as possible; once 
established, architecture can be 
more readily modified/adapted—
even after fielding—should 
circumstances warrant 

Space Architecture Emphasis on small number of large, 
monolithic satellites working 
independently; number of satellites 
fielded is no more than absolute 
minimum required to meet 
requirements. 

Emphasis on large number of 
smaller satellites working 
cooperatively; more satellites are 
fielded than necessary in order to 
enhance flexibility and support 
contingency/reserve capacity. 

Ground Architecture Ground sites are large, but few in 
number; sites are also fixed in 
location with ability to support a 
limited number and/or type of 
satellites; each site operates 
independently. Number of ground 
sites is no more than absolute 
minimum required to meet 
requirements. 

Ground sites are smaller, but greater 
in number; sites are either physically 
mobile, geographically distributed, or 
functionality distributed in order to 
support a large number and/or type 
of satellites; ground sites are 
interoperable and purposely exceed 
minimum requirements in order to 
enhance flexibility and support 
contingency/reserve capacity. 

Satellite The satellite bus, primary payload, 
and associated subsystems are 
tightly integrated and optimized to 
achieve maximum technical 
performance.  

Mass of satellite is minimized 
through custom interfaces, de-
prioritization of SWaP, and minimal 
propellant. 

The satellite bus, primary payload, 
and associated subsystems are 
loosely coupled to achieve 
modularity at acceptable 
performance. 

For larger satellites, mass is 
minimized through reduced technical 
performance, though offset by 
modular/standard interfaces, 
prioritization of SWaP, and 
additional propellant. 

Ground Site Each site is highly capable and is 
optimized for a specific mission; 
operations personnel are also 
focused on that mission. 

Facilities focus on minimizing 
physical footprint and using space 
as efficiently as possible. 

Each site is less capable, but is able 
to support multiple missions; 
operations personnel are trained to 
support multiple missions as well. 

Facilities are less concerned about 
physical footprint or using space 
efficiently; more emphasis on dual 

use and ready expansion. 

Common Architecture Communication pathways are highly 
reliable and robust (to known 
threats), but fewer in number and 
type and generally dedicated to a 
single mission; bandwidth is based 
on current capacity needs. 

Individual communication pathways 
may be less reliable, but are greater 
in number and type (e.g., crosslinks, 
dual-pathing) and mission 
applicability; bandwidth capacity is 
greater than currently needed. 
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nothing is as certain as we think it is and that to 

pretend otherwise is myopic and 

counterproductive.  

These DfP pillars collectively embody this central 

assertion: Genuine resiliency does not come from 

picking one optimal future architecture now; it 

comes from the ability to continually adapt the 

architecture across a range of future needs and 

threats, many of which are unpredictable and 

unknowable. Consequently, the more complexity 

and uncertainty that we are faced with, the more 

compelling the DfP approach becomes. Given the 

enormous complexity of the DOD space 

enterprise—coupled with volatile adversary 

behaviors, dynamic threats, and unpredictable 

technologies—the national space enterprise is an 

ideal candidate for DfP. 

Glossary of Terms 

This paper uses jargon that is likely to be familiar to 

systems engineers as well as those in the space 

community. To assist understanding for those 

readers not as well versed in this jargon, an 

explanation of some of these terms is provided 

below. 

DOD Space Enterprise. Describes the broad scope 

of space capabilities—and supporting activities and 

resulting architecture—that are the responsibility of 

the DOD. Previously, it was difficult to correlate 

these responsibilities to a single DOD organization, 

but with the recent establishment of the United 

States Space Force, this scope is now largely the 

purview of that Service. 

Emergence. Salient characteristic of complex 

systems. It occurs when a system exhibits 

characteristics not seen in its constituent elements, 

usually due to difficult-to-quantify/difficult-to-

characterize interactions. The homicidal behavior of 

HAL 9000 in the book and movie 2001: A Space 

Odyssey is a good example of emergent behavior. 

Engineering Tradespace. In engineering parlance, 

this is the range of all possible design options. In 

general, the larger the tradespace, the more 

implementation options are available.  

Functional Requirements. These describe—

typically qualitatively—the activities (or functions) 

that need to be performed in operations. Functional 

requirements pertain to what the system must do and 

are typically achieved as part of specific, deliberate 

design decisions. A functional requirement for a 

Jedi’s lightsaber would be that it can cut through 

virtually any substance. 

Functional Availability. Defined as the probability 

that a satellite constellation will meet the system 

KPPs given the current state of the constellation and 

the planned replenishment schedule. 

Kessler Syndrome. This is a scenario in which 

collisions between objects in low Earth orbit create 

more debris, which increases the likelihood of even 

more collisions, i.e., a cascading effect. The 2013 

movie Gravity may have had its technical (and plot) 

shortcomings, but it effectively conveys the basic 

nightmare of the Kessler syndrome. 

Key Performance Parameter (KPP). Represents 

the topmost requirement in the DOD requirements 

process, which are considered the most critical/

essential for successful mission accomplishment.  

Systems Engineering (SE). Definitions of SE 

abound. Here’s one from the DOD (per the Defense 

Acquisition Guidebook): “methodical and 

disciplined approach for the specification, design, 

development, realization, technical management, 

operations and retirement of a system.” In this 

paper, the term “Principled Design” is used 

synonymously with SE. 

Non-Functional Requirements (NFRs). These 

define general system attributes, sometimes referred 

to as “system-wide requirements,” but more often as 
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“quality attributes.” Examples include flexibility, 

agility, versatility, and resilience (note prevalence of 

common suffixes; this is why NFRs are also referred 

to as the “-ilities”). NFRs are typically achieved as 

part of an architectural/design implementation. 

Potential NFRs for a Jedi’s lightsaber could include 

durability and portability. 

Requirements Creep. Pejorative term used to 

describe the situation where baselined requirements 

tend to unexpectedly change over time, generally to 

be more stringent/demanding. Requirements creep 

is generally regarded as the bane of a structured 

requirements management process. 

SWaP: Acronym that stands for “size, weight, and 

power.” It is a shorthand description for key form 

factor elements that are allocated for potential future 

use. In the space community, the term is most 

frequently used in relation to satellites where size, 

weight, and power are especially scarce. 
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