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Abstract—Prompted by the rise in the use of small satellites 
throughout the space industry in the late 1980’s, The Aerospace 
Corporation began to study small satellites to better understand 
the design principles that were being employed in their 
implementation.  These studies highlighted the fact that cost 
models developed for traditional large satellites were not 
applicable to small satellites. This led to the development of the 
Small Satellite Cost Model (SSCM) in the mid 1990’s.  This 
model estimates subsystem- and system-level costs for satellites 
weighing less than 1000 kg using cost estimating relationships 
(CERs) derived from actual costs and technical parameters.  
Over the years, SSCM has evolved to account for the increasing 
number of small satellites that have been launched, which has 
included refining the CERs and increasing the scope of the 
model.  This paper will discuss the development of the current 
version of SSCM released in 2019 (SSCM19).  The topics 
covered will include the history of SSCM, the CER generation 
process, updates from the previous version of SSCM, the 
application of the model and future efforts to enhance the 
model. 
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1. INTRODUCTION 

In the past two decades, developers of space systems have 
turned toward small satellites as vehicles for science and 
technology demonstration missions. Small satellites, defined 
as weighing up to 1000 kg, because of their functional and 
operational characteristics and comparatively low 
development and service costs, are providing access to space 
for more users than the large satellites prevalent over the last 
30-40 years [1]. Relatively low acquisition costs and short 
development timelines offer space-related capabilities 

previously reserved only for highly-funded programs. Small 
satellites with sufficient power, pointing and tracking 
accuracy, on-board data compression, storage and processing 
capabilities, high-rate data downlinking, and associated 
ground segments have been demonstrated by NASA, the 
DOD, the Centre National d’Études Spatiales (CNES), the 
European Space Agency (ESA), and various other 
organizations for a variety of applications. However, due to 
the desire to use less expensive small launch vehicles, 
advanced and commercial technologies are increasingly 
being incorporated into small spacecraft to systematically 
reduce mass and increase performance, in some cases with 
minimal insight into the impacts to cost and assumed risk. 

Small satellite studies at The Aerospace Corporation 
(Aerospace) have shown that cost-reduction techniques 
employed on modern small satellite programs, such as the use 
of commercial off-the-shelf hardware and software, result in 
system costs that are substantially lower than those estimated 
by traditional weight-based parametric cost estimating 
relationships (CERs) [2]. Cost models based on historical 
costs and technical parameters of traditional large satellites 
are not applicable to this class of missions [3], [4]. Credible 
parametric cost estimates for small satellite systems require 
CERs derived from a cost and technical database of modern 
(post-1990) small satellites. The Small Satellite Cost Model 
(SSCM) was developed in response to this shift towards small 
satellites. 

Industries continuously evolve, and the satellite industry is no 
exception. After the paradigm shift to the use of small 
satellites in the 1990’s, the past decade has seen another 
major change in satellite development with the introduction 
of Cubesats. Just as the cost models of the time were not 
applicable for small satellites when they became more 
prevalent, leading to the need for SSCM, the same can be said 
for SSCM when it comes to estimating the costs of Cubesats. 
Cubesats are developed under a completely different 
paradigm, which is not representative of the satellites used to 
develop SSCM; therefore, SSCM is not applicable to 
estimate the costs of Cubesats. 

This paper is an update to the last paper written on SSCM, 
which was for the version released in 2014 (SSCM14) [5]. It 
covers many of the topics that are common to all versions of 
SSCM, discusses updates/changes made since 2014, and 
provides specifics about the new version released in 2019 
(SSCM19). The paper is organized as follows: Section 2 
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discusses the history of SSCM; Section 3 describes the 
philosophy related to the development of the CERs used in 
the model; Sections 4 and 5 cover additional features in the 
user interface related to cost risk and funding profiles, 
respectively; Section 6 discusses the changes from SSCM14; 
and Section 7 steps through the SSCM19 user interface. 

 
2. HISTORY 

Work on the development of CERs to estimate the costs of 
small satellites began in the early 1990’s with funding from 
various DoD organizations. These early CERs only estimated 
system-level costs of spacecraft and were based on a very 
limited database. The CERs continued to be refined and were 
eventually implemented in a standalone DOS-based PC 
program known as The Aerospace Corporation’s Small 
Satellite Cost Model (SSCM). These CERs estimated the 
total satellite bus cost as a function of spacecraft technical 
parameters (e.g., mass, power, pointing accuracy). In the 
mid-1990’s, a new methodology for developing CERs was 
implemented with the introduction of the General-Error 
Regression Model (GERM) [6]. Additionally, work began on 
the first set of subsystem CERs. 

At the same time, NASA began to seek better cost analysis 
methods and models specifically tailored to small satellite 
programs. This search was motivated by NASA’s need to 
respond to increasingly frequent questions regarding small 
satellite concepts and system analysis. In 1995, NASA’s 
Lewis Research Center (now Glenn Research Center) and 
NASA Headquarters (HQ) Code BC funded the first phase of 
an activity at Aerospace to gather information regarding 
capabilities and costs of small satellites, and to develop a set 
of subsystem-level small satellite CERs. This effort involved 
an examination of technical and economic issues related to 
designing, manufacturing, and operating small satellites. 
Programs either already completed or launching in the next 
year were targeted for data collection, so that the technical 
and cost data obtained were as close to final as was feasible. 
A cost and technical survey was generated and distributed to 
each of these programs. The data that were collected 
consisted not only of mass, power, technical parameters, and 
cost for satellites, but also impacts on cost such as schedule 
difficulties, funding interruptions, requirements changes, and 
cost-sharing among multiple contractors. From this data, 
Aerospace developed several stand-alone CERs that 
estimated recurring and non-recurring costs of small satellite 
subsystems. This model, along with other cost estimating 
tools and databases, provided the capability to estimate 
lifecycle costs for a variety of small mission concepts. The 
resulting form of the model, which used subsystem CERs to 
estimate the total cost of a small satellite, is the form that the 
model has to this day. 

In 1998, Aerospace began funding SSCM development and 
upgrades through internal research and development funds, 
resulting in the release of an updated version that same year. 
This version was the first to include interplanetary spacecraft 
and incorporate NASA’s technology readiness levels (TRLs) 

to generate risk-based estimates. Also, the model was moved 
from a DOS- to an Excel-based tool. 

Work on SSCM has continued, leading to the release of new 
versions in 2000, 2002, 2005, 2007, 2010, 2014, and 2019. 
SSCM02 included several changes, including a more 
powerful and flexible graphical user interface (including the 
first deployment of the funding profile feature), and a new 
approach to cost risk that was user driven as opposed to being 
based on TRLs. The change to the cost risk methodology was 
made as further review of the TRL-based approach 
highlighted that the inputs to the algorithm were too 
subjective for the exactness of the result that was provided. 
SSCM05 saw the introduction of two sets of CERs that sub-
divided the available data into two classes: micro (≤100 kg 
mass) and small (>100 to ≤1000 kg mass). The micro CERs 
had been looked at for previous versions, as it had been 
noticed that micro satellite missions trended differently than 
satellites with masses greater than 100 kg, but due to limited 
data, had not been deemed usable. The addition of new data 
provided a large enough data set from which to generate 
micro CERs. Since then SSCM has not gone under any 
radical changes; the subsequent versions have been released 
to account for new data and new cost drivers. 

The general cadence for updating SSCM is every two to three 
years. Typically, an update does not occur sooner than two 
years, but can be more than three years, such as between 
SSCM14 and SSCM19. The timing is a function of many 
factors: new/updated data, available funding, perceived 
model staleness, etc. 

 
3. CER DEVELOPMENT 

The first step in the development of new CERs for SSCM19 
was reviewing the available data to make sure that it was 
properly categorized and normalized. This is a very important 
step, as the CERs are only as good as the data from which 
they are generated. Once that was done, the actual CER 
development could be undertaken. This began by using a 
combination of statistics, engineering judgment, and often, 
common sense, to find which of the 200+ technical 
parameters within the database worked best for each 
subsystem. This included looking at parameters directly 
associated with a subsystem (e.g., beginning-of-life power 
for the electrical power subsystem) as well as parameters not 
directly associated with a subsystem (e.g., satellite wet mass 
for the attitude determination and control subsystem). This 
process is not a one-time occurrence and the search for 
relevant parameters continued throughout the whole of the 
CER generation process. 

As a starting point for the CER generation, all forms of CERs 
were considered, from single variable linear and non-linear 
CERs to multi-variable linear and non-linear CERs. When 
looking at multi-variable CERs, care was taken to use non-
correlated parameters. For example, little is gained by 
regressing against both beginning-of-life power and end-of-
life power, since the two are highly correlated. In general, 
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throughout the history of the development of SSCM, higher-
order non-linear CERs have tended to provide the best 
results, and that was once again the case for SSCM19. For 
SSCM, “best” is considered to encompass good statistical fit, 
low error, simple, and physically meaningful. While a good 
amount of data is available from which to generate the CERs, 
care was taken to not include too many parameters in the 
CERs. As each CER was developed, the results were 
examined for any statistical outliers and time was taken to 
identify whether the apparent discrepancies were attributable 
to numerical errors or possibly non-traditional ways of 
accounting for costs; based on this information, choices were 
made to exclude data points that were not in-family with the 
whole of the data set. 

One other step in the CER generation process was to look for 
cases where it might make sense, from an engineering 
perspective, to subdivide subsystems into separate categories 
to account for fundamentally different design approaches. 
One example is the attitude determination and control 
subsystem, where the primary approaches are spin-stabilized 
and 3-axis, which can be significantly different and driven by 
distinct parameters. By segregating the data in such a way, 
the cost drivers for each type of design could be better 
explored, leading to more appropriate CERs. 

Statistical Approach 

The CER development effort takes advantage of 
developments in regression techniques applied to cost 
analysis. In regression, models are classified as one of two 
types: additive-error or multiplicative-error. In the simple 
linear case the model forms are: 

  𝑦 = 𝑎 + 𝑏𝑥 +  𝜀  (1) 

or 

  𝑦 = (𝑎 + 𝑏𝑥) × 𝜀  (2) 

where y is the true cost, x is a cost-driving parameter, a + bx 
is the estimated cost, and  is the (random) error of estimation 
(a and b are referred to as “coefficients” of the model). The 
error model in (1) is known as an additive-error model, since 
the error is an additive term. The error model in (2) is known 
as a multiplicative-error model, since the error term is a 
multiplicative factor. 

Analogous examples for a common nonlinear situation are 

  𝑦 = 𝑎𝑥 +  𝜀   (3) 

or 

  𝑦 = 𝑎𝑥 × 𝜀   (4) 

where y is true cost, x a cost-driver, axb is the estimated cost, 
and  the error of estimation. 

In an additive-error model, each observed value of cost is 
assumed to be a function of cost-driving parameters plus a 
random error term that does not depend on the parameters. 
Unfortunately, this assumption is often not valid. A case in 
point is where the actual costs change by an order of 
magnitude or more as a function of the inputs, in which case 
the random error should be considered proportional to the 
cost. In such an instance, a multiplicative-error model can be 
assumed, where the error is proportional to the y-value, so 
that larger costs lead to larger dollar value errors. 

The discussion to follow only focuses on multiplicative error, 
since that is the formulation used to derive the CERs for 
SSCM. The statistical framework is the equation 

  𝑦 = 𝑓(𝑥) × 𝜀   (5) 

where y is the true cost, x is a cost-driving parameter, f(x) is 
the estimated cost, and  is the proportional error of 
estimation. Here, f(x) can take on any functional form, linear 
or non-linear, single or multivariate, that is found to be 
appropriate. In theory, there is no limit to the number of forms 
that can be used; in practice, however, the forms are often 
“limited” to a smaller set of possibilities, due to the nature or 
shape of the data. 

In the multiplicative-error model, one sample observation yi 
corresponds to each xi, and the error term i equals the ratio 
of yi to f(xi). Thus, 

  𝜀 =
௬

(௫)
   (6) 

where i = 1 for all i would indicate no predictive error. Here, 
the least-squares problem is to find the coefficients (of f) that 
minimize the sum of squared relative deviations (errors) from 
the predictions. That is, once the functional form is chosen, 
the calculation consists of minimizing the sum of squared 
percentage errors: 

∑(𝜀 − 1)ଶ = ∑ ቀ
௬

(௫)
− 1ቁ

ଶ

= ∑ ቀ
௬ି(௫)

(௫)
ቁ

ଶ

(7) 

where xi and yi are the observed values. This minimization is 
achieved via numerical computation, yet some care must be 
exercised to ensure that one obtains the global minimum 
when employing such methods. This problem has been 
mitigated by developing and employing several powerful 
mathematical tools to assist in the minimization process. This 
form of regression has been termed General Error Regression 
and the model General Error Regression Model (GERM) [6]. 

Once the regression has been carried out, there are several 
ways to assess the quality of the CER: 

Standard Error of Estimate (SEE): The root-mean-square 
(RMS) of all percentage errors made in estimating points of 
the data (a “one-sigma” number that can be used to bound the 
actual cost within an interval about the estimate). Note that 
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this number is a percentage, rather than, say, a dollar value. 
The formula for the SEE is 

 𝑆𝐸𝐸 = ට
ଵ

ି
∑ ቀ

௬

(௫)
− 1ቁ

ଶ

ୀଵ  (8) 

where n is the number of observed values and m is the number 
of parameters being estimated (not the number of 
independent variables). The SEE quantifies the accuracy to 
which the cost model represents its own underlying data 
under the various uncertainties. 

Average Percentage Bias: The algebraic sum (positives and 
negatives included) of all percentage errors made in 
estimating points of the data averaged over the number of 
points; bias measures how well percentage over-estimates 
and under-estimates are balanced. 

Pearson’s Correlation Squared (R2): The R2 value measures 
the amount of correlation between estimates and 
corresponding database actuals; that is, the extent of linearity 
in the relationship between the two quantities. 

Even within the GERM framework, there are two schools of 
thought on which types of CERs to derive: minimum 
percentage error (MPE) or minimum percentage error under 
zero percentage bias constraint (MPE-ZPB). All things being 
equal, an unbiased estimator is preferred over a biased one. 
Unfortunately, in general, a CER cannot be optimized with 
respect to two different criteria (SEE and bias, for example), 
so SSCM’s CERs cannot be optimal with respect to all three 
above statistical criteria. In choosing to derive MPE-ZPB 
CERs for SSCM, zero bias was considered preferable to 
lower standard error, allowing the model to calculate an 
unbiased estimate of the entire spacecraft bus. 

When it comes to the final selection of the CERs, both SEE 
and R2 are used as part of the decision process for which CER 
to pick to represent a subsystem. In the case of SSCM, the 
goal is to develop a CER that has a SEE of 30% or less and a 
R2 of 0.70 or greater. These are just guidelines that have been 
selected and are not hard limits that must be followed. The 
CER must also make physical sense and simple (as 
mentioned above). And there are cases where one or both 
cannot be met and the best possible CER is selected to 
represent the subsystem. 

 
4. COST RISK 

Technology and Heritage 

One of several dilemmas in cost-estimation is the uncertainty 
inherent in parametric models, which includes such things as 
uncertainty associated with hardware design, inflation, labor 
rates, contractor accounting practices, and overhead rates. In 
the case of parametric cost models utilizing general-error 
regression, and with SSCM in particular, general cost-
estimating uncertainty is quantified by the SEE. 

Cost growth due to unforeseen technical difficulties has 
greater potential to cause costing uncertainty than any other 
single influence. Technical difficulties are often related to a 
project’s attempt to inject new technologies with limited or 
no flight demonstration into the design of the spacecraft. 
Twelve major NASA projects initiated after 1977 and 
completed before 1993 experienced an average cost growth 
of 77%, with eight of them citing technical complexities as a 
major risk driver [7]. Unfortunately, quantification of 
technical risk is not nearly as straightforward as quantifying 
general cost-estimating uncertainty. 

The level of design reuse (i.e., heritage) in a particular 
subsystem also impacts the amount of cost risk inherent in 
building that subsystem. Heritage is not the same as 
technology insertion; a system can exist where a previously 
developed design is utilized, but new technologies are also 
incorporated. A common example is an existing ADCS 
design that incorporates a new star tracker into a standard 
interface. 

A simple scheme for adjusting the cost estimate based on 
technical risk and heritage is implemented in SSCM. This 
scheme uses a triangular cost probability distribution for each 
subsystem, where the most likely cost is the output of the 
CER and the upper and lower limits are user-defined (Figure 
1). By identifying the lowest possible cost for the subsystem 
(e.g., 10% below the most likely estimate), as well as the 
highest possible cost (e.g., 150% greater than the most likely 
estimate), an appropriate distribution is calculated. A 
subsystem with very low design maturity and no flight 
heritage must have a much larger upper bound than a 
subsystem that has flight heritage and is very mature. This 
scheme allows modification of the cost risk parameters for 
each subsystem to properly take into account the cost 
uncertainty due to technology development and heritage. The 
user is left to determine the percentages to input for each 
subsystem based on engineering judgement, historical data, 
the planned design, etc. 

Cost-Probability Distribution 

Two sources of risk for each cost element have been defined: 
general cost-estimating uncertainty and uncertainty due to 
design implementation. General cost-estimating uncertainty 
is quantified by the SEE, while uncertainty due to design 
implementation is quantified by a triangular distribution 
defined by A, B, and M (Figure 1). These two sources of cost 
risk are merged into one cost-probability distribution that has 
a mean equal to the mean of the triangular distribution 

 𝑀𝑒𝑎𝑛ௌௌ =
ଵ

ଷ
(𝐴 + 𝐵 + 𝑀)  (9) 

and a variance that is equal to the sum of the variances from 
both sources of uncertainty 

𝑉𝑎𝑟ௌௌ = SEEଶ +
ଵ

ଵ଼
(𝐴ଶ + 𝐵ଶ + 𝑀ଶ − 𝐴𝐵 −

𝐴𝑀 − 𝐵𝑀)     (10) 
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Figure 1. Example of triangular distribution defined by the lower bound, A, upper bound, B, and the “most likely” 
estimate, M, derived from the CER. Depending on the inputs, the triangle can have any shape, including a right 

triangle (A = M or M = B), isosceles (M – A = B – M), or even a single point (A = M = B). 

The system-level variance is also affected by the correlation 
of the errors in individual subsystems. Cross-correlation 
coefficients are needed to accurately capture the statistical 
effects of adding uncertainties [8], [9]. Correlation 
coefficients can be calculated in two ways: linear (Pearson's 
product-moment) correlation and rank (Spearman's) 
correlation [10]. Pearson's product-moment correlation is a 
measure of the linearity between two random variables and 
Spearman's rank correlation is a measure of the monotonicity 
between two random variables. In SSCM, linear correlation 
coefficients are derived and used because the sum of random 
variables depends on Pearson's product-moment correlation 
and not Spearman’s rank correlation. 

Correlation coefficients are generated for the relationship 
between each subsystem- and system-level element. The 
coefficients are calculated using 

 𝑟௫௬ =
∑ (௫ି௫)

సభ (௬ି௬)

ට∑ (௫ି௫)
సభ ∑ (௬ି௬)

సభ

  (11) 

where xy is the correlation coefficient between two elements, 
x and y are errors from each element, and xm and ym are the 
average errors from each element. Correlation coefficients 
range in value from –1 to +1. A coefficient of either –1 or +1 
denotes that two subsystems are perfectly correlated; the 
error in one subsystem will be directly reflected in the error 
of the subsystem to which it is correlated. 

The variance from the correlation coefficients is added to the 
variance for the CER and design implementation uncertainty 
to generate the variance for the total spacecraft and system 
according to [11] 

𝑉𝑎𝑟௧ = ∑ 𝑉𝑎𝑟ௌௌ

ୀଵ + 2 ∑ ∑ 𝜌

ିଵ
ୀଵ


ୀଶ 𝜎𝜎 (12) 

where jk is the correlation coefficient between elements j and 
k, and j and k are the standard deviations for elements j and 
k calculated from the original variance equation. The first 
term represents the sum of the element variances, while the 
second term is the covariance calculated from the correlation 
coefficients. 

With the total system variance calculated, a cost-probability 
distribution can be generated. Research by The Aerospace 
Corporation and the MITRE Corporation has shown that this 
distribution may be accurately approximated by a lognormal 
distribution [12]. This approximation technique, known as 

Formal Risk Assessment (FRISK), allows confidence 
percentiles to be computed without Monte Carlo simulation. 
The end product of the cost risk assessment in this framework 
is a total spacecraft cost-probability distribution, from which 
mean, standard deviation, percentiles, and other descriptive 
statistics can be read. 

Error Estimation Outside the Range of Validity 

Parametric cost models have certain advantages and 
disadvantages, as do all cost estimation techniques. One of 
the disadvantages of such models is that the CERs can only 
be reliably applied to inputs that fall within the range of the 
data used to create the CERs, which is termed the “range of 
validity.” As a variable strays further from the range of 
validity, it would be expected that the CER estimate would 
be less reliable. For example, if a subsystem CER is based on 
subsystem mass, and the mass range within the database is 5 
kg to 50 kg, an estimate for a subsystem weighing 55 kg 
would be seen as more reliable than one weighing 80 kg. 

Applying CERs outside the range of validity makes two 
assumptions: (1) the CER remains valid beyond the data 
range; and (2) the SEE does not change outside the data 
range. The first assumption is not all that unreasonable, based 
on some studies done with data points outside the SSCM 
database. An in-depth analysis was made with one of the 
early SSCM versions using the planetary spacecraft NEAR 
(Near Earth Asteroid Rendezvous), which went beyond the 
SSCM database range in several cases, and provided decent 
correlation between the model results and the actual 
spacecraft costs [3]. Furthermore, in the absence of additional 
information, there is little reason to doubt the CER trend in 
the vicinity of the data range, although the trend may be less 
certain further away from the range of validity. However, the 
second assumption is questionable at best and unreasonable 
at worst, as the uncertainty should increase as the input 
deviates further from the database range. The SEE is a 
statistical measure whose value is based on the underlying 
data. By the very nature of the problem, there is no way to 
analytically compute a new value outside the range of 
validity. Further, the SEE is a measure of cost-estimating 
uncertainty, not CER-applicability uncertainty. The problem 
here is one of data-insufficiency, since there is simply not 
enough data available to make an analytical estimate of the 
behavior of the variance outside the range of the database. 

Previously, research was done at Aerospace to investigate 
methods for addressing this problem by estimating the SEE 
based on the spread of the input data, but no solution was 

M B A 
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found. Therefore, in SSCM, the SEE is not adjusted outside 
the range of validity of the input data. Thus, the user needs to 
take great care to examine cases where the input data is 
outside the range of validity and make a sound engineering 
decision about whether the CER remains applicable. 

 
5. FUNDING PROFILE 

To aid in project planning and milestone development, a 
funding profile function is included in SSCM. This function 
spreads the total development cost to generate a funding 
profile for the spacecraft for the formulation (Phase B) and 
implementation (Phases C and D) phases. Phase B starts 
when the project is given the go ahead to start detailed design 
and Phase D ends at launch plus 30 days. This profile can be 
used as a tool to look at various ways to spread costs. It is 
only meant to be a guideline in planning project spending 
since it spreads only the spacecraft portion of the total project 
costs and does not account for other programmatic issues 
such as yearly funding caps. 

The funding profile is generated using the equation below 
taken from [13] 

𝐹(𝑆) = Aൣ10 + 𝑆൫(15 − 4𝑆)𝑆 − 20൯൧𝑆ଶ + 𝐵[10 + 𝑆(6𝑆 −

15)]𝑆ଷ + [1 − (𝐴 + 𝐵)](5 − 4𝑆)𝑆ସ  (13) 

 

Figure 2. Various funding profiles; dashed line 
represents front-loaded (e.g., engineering), solid line 

represents evenly distributed (e.g., manufacturing), and 
dotted line (e.g., flight testing) represents back-loaded. 

where F(S) represents the fraction of the funding spent up to 
time S, S is the fraction of development time elapsed, and A 
and B are coefficients based on the desired rate of spending. 

The coefficients A and B are selected based on the desired 
spreading of the costs, based on the percentage expenditure 
of costs at the schedule midpoint. Figure 2 shows examples 
of front-loaded spending, evenly distributed spending, and 
back-loaded spending. 

SSCM generates an estimate for Phases C and D of the 
spacecraft development, yet the funding profile spreads costs 
over Phases B, C, and D. Therefore, the SSCM estimate must 
be augmented to account for the amount of funding spent in 
Phase B. According to the NASA Systems Engineering 

Handbook, the costs in Phase B should typically be between 
six and 10 percent of the development costs [14]. Based on 
this, SSCM adds 10 percent to the Phase C/D estimate prior 
to generating the funding profile. 

 
6. CHANGES FROM SSCM14 

In creating SSCM19, all the technical parameters in the 
database were re-examined to identify the strongest cost 
drivers. This occurs with every new version of SSCM due to 
the addition of new data. Also, there was continued 
investigation as to the significant drivers in the development 
of spacecraft subsystems. There were no significant changes 
to the CERs; the general form of all the CERs is the same, 
with some changes to the parameters used in the CERs. 

 
7. MODEL APPLICATION 

SSCM19 is implemented in Microsoft Excel as a standalone 
workbook. The workbook is backed up by Visual Basic for 
Applications modules that perform many of the model 
functions. Inside the workbook are worksheets that provide 
the all the necessary information to generate an estimate with 
the model, including five user worksheets and three 
information worksheets. The user worksheets are Inputs, 
Cost Estimate, Cost Risk, Funding Profile, and Inflation 
Factors, and the information worksheets are Glossary, 
Drivers, and CERs. 

Inputs 

The Inputs worksheet shown is the primary user interface 
for the model. This worksheet provides the area in which to 
input values for the parameters used in the CERs and 
information on how the inputs compare to the data set used 
to generate the CERs. 

Figure 3 shows the Technical Parameter area that lists all the 
parameters that can be used to generate a cost estimate and 
allows the user to input values for those parameters. Some 
parameters listed are only required under certain conditions, 
defined by the satellite wet mass and by the choices made in 
the drop-down boxes; parameters that are not required are 
grayed out. There is also a Notes space to where comments 
about the inputs can be entered. 

The information in the Range area is used to identify input 
values that are outside the range of the CERs, as shown in 
Figure 4. Each CER was generated from a specific data set 
and is only intended to be valid within this range (see Section 
4). Many parameters that will be used to generate SSCM 
estimates will not fall within their respective ranges and it is 
up to the user to determine whether the CERs are valid for 
the input data. The Range area consists of Minimum and 
Maximum columns that show the lower and upper limits for 
each parameter. Included with these values are the inputs for 
those parameters and a comparison of the input values to the 
valid data ranges for the CERs. This area also informs the 
user as to whether all the necessary parameters to generate an  
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Figure 3. Inputs Area. The inputs for the parameters 
used in the CERs (left-hand column) are entered in the 
center column and notes on each input can be placed in 
the right-hand column (ADCS = Attitude Determination 
and Control System; BOL = Beginning of Life; C&DH = 

Command and Data Handling; TT&C = Telemetry, 
Tracking, and Command). 

 

Figure 4. Range Area. Displays information on whether 
an input for a parameter is within the valid range for the 

CER, is not being used, has not yet been entered, or is 
outside the range of validity. Parameters that are used 

for different CERs are broken out by CER. 

estimate have been supplied. To aid the user when inputting 
parameter values, when the value cell for a parameter is 
selected in the Technical Parameter area, the corresponding 
row(s) related to the parameter in the Range area are 
highlighted to show the user the range of validity. As with the 
Technical Parameter, when a parameter is not required, it is 
grayed out. 

Cost Estimate 

The Cost Estimate worksheet displays the results produced 
by the CERs for the given inputs, including a table of the cost 
estimate broken out by subsystem and two graphs that 
provide detailed information on the estimate. This worksheet 
requires no user interaction; it strictly displays the estimate 
results. 

The cost estimate table (Figure 5) shows the estimated cost 
for each subsystem. Non-recurring and recurring costs are 
presented, as well as the development and first unit total. The 
subsystem costs are summed into a Spacecraft Bus subtotal, 
which is added to the system-level programmatic costs to 
create the Spacecraft Development & First Unit total. The 
Range area displays messages as to whether any of the input 
parameters for a particular subsystem are out of range. 

Two additional columns display how the total costs are split 
as a percentage by subsystem. The Sub-level column shows 
how the Spacecraft Bus costs are divided among each 
subsystem, while the System-level column shows how the 
Spacecraft Development & First Unit costs are divided 
among the spacecraft bus and system-level. These data are 
also presented in graphic form below the cost estimate table, 
as shown in Figure 6. 

Cost Risk 

The Cost Risk worksheet is where the subsystem estimates 
from the Cost Estimate worksheet are rolled-up via the 
FRISK methodology. The cost risk table shown in Figure 7 
has separate areas to input the high and low percentages and 
display the triangular probability distribution of the user- 
defined cost risk and the combined mean and standard error 
of the estimate (see Section 4). 

The Most Likely column is the result of the CER for that 
particular subsystem. The shape of the triangular probability 
distribution is determined by the high and low percentages 
defined by the user on this worksheet. 

The Mean is the risk-impacted mean of the triangular 
distribution, while the Standard Error includes both the 
variance from the CER and the variance from the triangular 
distribution. The means are summed and the standard errors 
are combined along with cross-correlation terms (see Section 
4) to create a system-level mean and standard error, 
respectively. The cost probability distribution is displayed 
below the cost summary in graphical and tabular format, as 
shown in Figure 8. 

It should be noted that the model has a great amount of 
flexibility in adjusting the estimate based on the user’s 
understanding of the subsystem technology readiness, 
subsystem heritage, and the cost risk methodology. 

Funding Profile 

The Funding Profile worksheet generates the monthly 
spending levels for the development of the spacecraft based  
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Figure 5. Cost Estimate Table. The section to the left includes details on the estimate for the spacecraft generated by 
the CERs including non-recurring/recurring costs, total costs, and percentage distributions at the subsystem-level and 

system-level. The section to the right highlights inputs that are out of the valid range of the CERs for each estimate 
(IA&T = Integration, Assembly, and Test; LOOS = Launch and Orbital Operations Support; PM/SE = Program 

Management/Systems Engineering). 

 

 

Figure 6. Cost Breakdown Plots. The chart on the right shows the subsystem-level cost breakdown. The chart on the 
right shows the system-level cost breakdown. 

 

 

Figure 7. Cost Risk Table. The user inputs sets a triangular distribution for the cost risk of each subsystem by 
setting the lowest and highest possible cost as a percentage of the CER estimate. The mean and standard error for 
each subsystem are calculated and used to generate system-level values for use in the cost probability distribution. 
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Figure 8. Cost Risk Plot. The graph on the left shows the cost probability distribution function as a lognormal 

distribution. The table on the right shows cumulative probability. 

on the development time, model estimate, and several user-
defined inputs (Figure 9). The funding profile spreads costs 
from the beginning of Phase B to the end of Phase D 
(nominally, launch plus 30 days). The inputs are the launch 
date, the cost estimate to spread, and the percentage of 
funding spent at the schedule midpoint, which is a measure 
of how the funding will be distributed. The development start 
date is calculated based on the development time defined on 
the Inputs worksheet along with the launch date. The user is 
afforded a handful of estimates to spread: either the primary 
estimate for the Cost Estimate worksheet, or some of the cost 
risk estimates from the Cost Risk worksheet. Then, based on 
the choice of constant or real-year dollars, monthly and 
cumulative plots of funding are generated (Figure 10). These 
costs are summarized by fiscal year in the Funding Profile 
table (not shown). 

 

Figure 9. Funding Profile Inputs and Outputs. The top 
section shows the Funding Profile inputs. The middle 

section shows the calculated start and end points of the 
spacecraft development period. The bottom section 

shows the yearly and cumulative funding by fiscal year. 

Inflation Factors 

The Inflation Factors worksheet defines the inflation 
factors that will be used to convert from the FY19 base to 
some other constant year dollars (for the cost estimate) or to 
real year dollars (if needed for the funding profile), as shown 
in Figure 11. This worksheet contains NASA and Air Force 

values for inflation from 2009 to 2018, along with each 
organization’s projected inflation out to 2039. In addition, a 
customizable field offers the capability to input a set of user-
defined inflation factors. 

Information 

The model also provides three worksheets that provide 
additional information about the cost estimating 
methodology. The Glossary worksheet describes what 
hardware is estimated by each CER. The Drivers worksheet 
shows the cost drivers for each CER. The CERs worksheet 
shows the exact form for each CER. The Graphs worksheet 
plots each of the CERs over the range of data for the 
parameters used in the CERs; given the multi-dimensional 
nature of the many of the CERs, some parameters are not 
varied and a representative input value is used. 

 
8. SUMMARY 

Traditional cost-estimating models based on historical data 
from large civil and military programs overestimate costs of 
modern small satellites. Over the past 30 years, numerous 
small satellites have been procured by NASA, the DOD, 
CNES, ESA, and various other organizations. These projects 
have often strived to reduce non-recurring development costs 
by making use of existing hardware and off-the-shelf 
components and by reducing contractor oversight and 
reporting requirements. In an attempt to credibly estimate the 
costs of such programs, Aerospace has developed a set of 
subsystem-level cost-estimating relationships based on the 
actual costs and physical and performance parameters of 
small and micro satellites. 

CERs were derived using a generalized error regression 
model and assuming constant relative error. Implicit in this 
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Figure 10. Funding Profile Plots. The plot on the left shows the funding required per month, while the plot on the 
right shows the cumulative funding for Phases B, C, and D. The y-axis label indicates if the funding profile is in 

constant year or real year dollars. 

 

Figure 11. Inflation Factors. The user can use NASA or 
Air Force standard inflation factors or input user-

defined values. 

 

method is the assumption that cost estimating error is a 
percentage of the estimated costs, rather than a particular 
dollar value independent of the estimate. Cost drivers and 
CER forms were chosen based on engineering judgment and 
the statistical quality of the regression results with the latter 
measured primarily by standard error and Pearson’s 
correlation squared under the constraint of zero percent bias. 

A cost risk methodology allows the user to define the cost 
probability distribution for each subsystem. A funding profile 
spreads the estimated costs over Phases B, C, and D to give 
the user an idea of what the potential yearly funding 
requirements will be for the spacecraft over the course of the 
development. 

While quite useful as it stands, this model should always be 
considered as a work in progress. Small satellite programs are 
continually being launched and targeted for inclusion in 
future CER development efforts. 

 
FURTHER INFORMATION  

For more information on SSCM, or to learn how to obtain a 
copy of SSCM, visit the SSCM website at 
https://aerospace.org/sscm or send an email to 
sscm@aero.org. 
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