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"The science of today is the technology 
of tomorrow" —Edward Teller 

Game Changer 

NEUROMORPHIC COMPUTING: THE 
POTENTIAL FOR HIGH-PERFORMANCE 
PROCESSING IN SPACE 
Gennadi Bersuker, Maribeth Mason, and Karen L. Jones 

Artificial intelligence (AI) depends upon generating near-realtime data analysis, yet modern computers are 
often inefficient in the tasks of recognizing, analyzing, and classifying large volumes of information. 
Neuromorphic computing (NC) is intended to cover this gap by emulating certain aspects of brain 
functions. This brain inspired architecture, combining both computation and memory emulating neurons 
and synapses, has the potential to achieve the requirements of next-generation AI systems. NC 
technology integrates algorithms to support realtime learning with architectures built on novel computing 
hardware to address specific user applications.  

The R&D and commercial sectors have started to advance NC capabilities in non-space applications. The 
space sector will likely leverage these R&D and commercial sector accomplishments as a “spin-in” 
technology. However, there is no easy path to adopt NC into the space sector. Satellite applications 
impose strict requirements—including limits on size, weight and power consumption, as well as the need 
for radiation-tolerance. This drives a need to develop space-resilient NC solutions. This paper explores: 
leading hardware innovators; specific triggers which may enable NC hardware to advance towards 
successful space applications; and general R&D and commercial efforts that will most likely contribute to 
future space sector NC innovations.  
 

Neuromorphic Computing: Market Readiness 
Research and commercial players are focusing on development of neural processing units. 

In-Space: R&D Phase, no known successful in-space demonstration. 
Non-Space: Demonstration and early market introduction phase. 

 
Strengths 

Drivers that might advance NC adoption 
Weaknesses 

Drivers that might delay NC adoption 
• Demonstrated potential for overcoming constraints on power 

and speed to enable energy efficient and agile information 
systems. 

• NC could enable more efficient use of AI specific applications 
for: object identification, change detection, autonomous control 
and decision making for a space system.  

• NC will support onboard adaptive learning, based on incoming 
data feeds when ground-based processing is unavailable.  

• Without careful coordination of efforts between algorithm, 
architecture, and hardware experts, results may be 
suboptimal. 

• Conventional architectures have a robust suite of 
development tools, along with large numbers of technical staff 
who are trained in their use. NC will require significant funding 
and available researchers to advance technological progress 
for a range of specific space applications. 
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Introduction 
Neuromorphic computing (NC) is founded on the 
principle that asynchronous systems can work in 
parallel—mimicking the efficiencies of neuro-biological 
architectures like our brains. In traditional computing, 
computation and memory read/write operations are 
performed sequentially. By contrast, in a neuromorphic 
system, asynchronous circuits containing arrays of 
memory elements can conduct key mathematical 
(multiply-accumulate) operations in parallel at the location 
of data, thus reducing time and power by the avoidance of 
moving calculated values.  

Why is this a game changer? In the non-space world, there 
is a strong need to increase speed while reducing power 
consumption for data centers, smart cars and cities, the 
internet of things (IoT) and a 
range of other distributed and 
near realtime mobile 
applications that depend on 
fast “intelligent” analysis of 
multiple data streams, which 
AI is intended to deliver. 
While we initially expect 
terrestrial applications to 
harness the power of NC, it could emerge as a game 
changer for space applications where mission success 
relies on fast and autonomous analysis of a vast array of 
incoming information from multiple sources.  

The 2018 National Defense Strategy1 is the foundation for 
the Department of Defense’s fiscal year 2019–2023 
budgets to accelerate the DOD’s modernization programs. 
The strategy notes the department’s plans to “invest 
broadly in military applications of autonomy, artificial 
intelligence, and machine learning, including rapid 
application of commercial breakthroughs, to gain 
competitive military advantages.” Integration of NC into 
future satellite systems—whether commercial, civil or 
defense—will depend upon future commercial 
breakthroughs as well as academic and government 
funded research initiatives which have already accelerated 
several commercial NC efforts (see Table 2). This paper 
provides an overview of the current status of R&D and 
commercial hardware development, and trigger events that 
will enable breakthroughs in NC implementation. It is 
important to note that algorithm development and 

architectural advances are inextricably linked to the 
overall advancement of NC hardware in space. 

Neuromorphic-Inspired Architectures 
The von Neumann architecture2 is the basic building block 
of almost all computers today. The logic cores operate 
sequentially by transferring data to and from an external 
memory unit and the central processing unit (CPU). This 
energy-intensive storage process, known as the “von 
Neumann bottleneck” presents a severe limitation for data-
driven computing that requires significant memory 
updates (see Figure 1). By contrast, neuromorphic 
computing architectures combine both computation and 
memory through an array of neuron-like elements with 
synapse-like connections that can provide a significant 
improvement in computational capability for specific 

types of analyses. Like the 
brain, NC has a parallel, 
distributed, modular, 
scalable, and flexible 
architecture (see Figure 2). 
Neuromorphic computers 
can potentially perform 
complex calculations faster 
while using less power than 

traditional architectures. In addition to hardware 
advantages, a neuromorphic platform can be fault-tolerant 
and can efficiently implement realtime machine learning 
algorithms, which may be useful in solving emerging 
problems in space applications, including both commercial 
and national security challenges. Neuromorphic 
computing could also advance “edge computing” 
capabilities.  The “edge” refers to the point where data is 
collected and analyzed. For a satellite remote sensing 
system, for instance, the bulk of the computing would 
traditionally occur at a ground-based operations center. 
However, faster and more efficient data processing 
onboard, enabled by NC, could allow for greater 
autonomy and efficiency by mitigating latency and 
connectivity issues.  

Neuromorphic Computing Impact on  
Space Operations  
Space missions require high-performance, reliable 
computing platforms that meet size, weight, and power 
constraints and can function in challenging environmental 

Neuromorphic computing could emerge as  
a game changer for space applications 
where mission success relies on fast and 
autonomous analysis of a vast array of 
incoming information from multiple sources.  
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Figure 1: In conventional computing the von Neumann bottleneck constrains performance due to the time and energy 
consumed during the required data exchange between main memory chip sets and the processor. 

 
Figure 2: Neuronal functions are mimicked using resistive memory (resistive random-access memory or “RRAM”) 
arrays having analog capabilities suitable for synapse operations. These architectures have achieved high-
density, high-efficiency and low-power parallel signal processing. Incoming signals are modified according to the 
memory states thus avoiding logic-memory bottlenecks while accelerating computations.3  
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and operational conditions, including extreme 
temperature, high radiation, power loss, and disrupted 
communications. It is reasonable to expect that future 
space applications will drive the need for:  

 High performance under the size, weight, and power 
constrains of space missions  

 Data retention in the case of power loss/environmental 
instabilities  

 On-board adaptive learning capability based on 
incoming external data 

 Autonomous, onboard and fast data analysis to enable 
quicker response times 

Neuromorphic processors have the potential to fulfill these 
requirements. In addition, neuromorphic architectures are 
inherently fault tolerant,4 and several hardware 
implementations have high-radiation tolerance.5,6 In 
addition, neuromorphic algorithms are well-suited to 
classes of problems of interest to the space community.5  

Future applications for NC in space may include: 

Object Identification and Change Detection – Realtime 
change detection of information (images, texts, voice 
signals, etc.) currently involves processing, filtering, and 
extracting massive amounts of continuously received data 
to interpret events and activities. While these activities 
have been accomplished using von Neuman architecture, 
NC could enable more efficient on-orbit data processing 
and storage, by reducing the number of bytes required to 
save an image and/or eliminating the need to transfer large 
amounts of data to a ground station for image processing.  

Autonomous Control – Autonomous systems are critical 
for space-deployed remote platforms. Today the 
International Space Station relies upon autonomous 
systems for docking. The Global Exploration Roadmap 
(GER)7 notes that “advances in electronics, computing 
architectures and software that enable autonomous 
systems to interact with humans are needed and can be 
leveraged from commercial markets to support maturation 
of needed capabilities.” While NC combined with deep- 
learning algorithms are currently providing autonomous 
control capabilities to satellites, NC may introduce new 
advantages such as the capacity for realtime learning. As 

activities in space become more remote and automated, 
without a human in the loop, this advantage could improve 
the satellite’s ability to analyze onboard sensor data and 
make better autonomous operations decisions.  

Cybersecurity – Monitoring and assessing the cyber state 
of the spacecraft, are critical for ensuring mission 
assurance and information security. This may be 
particularly valuable in circumstances where 
communication links are jammed. Intrusion detection 
continually monitors communications and spacecraft bus 
traffic for indications of an attack underway and passes 
that information to the ground for situational awareness. 
Embedded intelligence, facilitated by NC onboard a 
spacecraft would provide a trusted protection mechanism.8 

In many current space systems, data collected by imagers 
and other sensors is sent to a remote operations center for 
processing. This data transmission is limited in bandwidth; 
meanwhile, sensors continue to increase in capacity. In 
addition, the ability to communicate with the data 
collection platform may be compromised in a threat 
environment (e.g., a disrupted communication link). A 
neuromorphic processor could enable fast processing of 
sensor data at the point of collection and provide change 
detection, autonomous control and cybersecurity 
functions, even in threat environments. Overall, a properly 
designed neuromorphic platform can resolve a 
fundamental time-energy conundrum by delivering both 
fast analysis with low energy cost.  

Market Trends and Drivers  
Emerging applications such as big data, mobile services, 
cloud services and the IoT require abundant computing 
and memory resources to generate the service and 
information that clients need. Neuromorphic computing is 
recognized by the electronics industry as a promising tool 
for enabling high-performance computing and ultra-low 
power consumption to achieve these goals. 

For example, artificial intelligence services such as Siri 
and Alexa rely on cloud computing through an internet 
connection to parse and respond to spoken questions and 
commands. Neuromorphic chips have the potential to 
allow a wide variety of sensors and devices to perform 
intelligently without requiring an internet connection. 
Table 1 demonstrates market trends that drive certain 
applications. NC could potentially address capability gaps 
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for cloud computing, mobile computing, and the IoT. The 
International Roadmap for Devices and Systems (IRDS)13 
is a worldwide effort that provides the physical, electrical 
and reliability requirements for logic and memory 
technologies to sustain technology growth for these 
market driving applications. The IRDS targets for Power-
Performance-Area-Cost (PPAC) for node scaling (every 
two to three years) are: 

Performance – Increase operating frequency at constant 
energy by 15 percent or more 

Power – Decrease energy per switching operation at a 
given performance metric by 35 percent or more 

Area – Reduce chip area footprint by 35 percent or more 

                                                      
1McKinsey findings are based upon the notion that 1) interoperability among IoT systems is required to capture 40 percent of potential value, 2) most 
of IoT data collected today is not used at all, and 3) data that is used is not fully exploited. 

Cost – Reduce die cost by 20 percent, while keeping 
increase in wafer cost, less than 30 percent  

These scaling targets drive the industry toward major 
technological innovations such as emerging memories that 
are highly desirable for NC architectures, ensuring that 
high-volume manufacturing processes for NC hardware 
will be available. IRDS expects that these emerging 
memories will present a potential alternative to 
conventional static random access memory (SRAM) and 
embedded dynamic access memory (e-DRAM) around 
2021.14 

NC: Innovators and Leaders 
Neuromorphic processing algorithms can be implemented 
using a variety of hardware platforms. They range from 

Table 1: Market Drivers for Applications  
Requiring Fast, Lower Power Computation Capabilities 

Market Trends Application 
Capabilities 

Attributes/Constraints NC as a Gap Filler 

By 2018, over a third of the world’s 
population is projected to own a 
smartphone, an estimated total of 
almost 2.53 billion smartphone 
users in the world.9,1 

Mobile computing Increased performance and 
functionality for certain tasks at 
constant energy (constrained 
by battery life). 

NC enables edge computing—
providing an IT environment 
and applications at the “edge” 
of a cellular network or the 
edge of any network. 

The IoT will produce an economic 
impact of up to $11.1 trillion per 
year by 2025.10 

The global market for robotics is 
growing far faster than expected 
and is projected to reach $87 
billion by 2025.11 

Autonomous sensing, 
multiple sensor data 
processing and the IoT 

Decreased power to allow 
devices to perform intelligently 
without internet connections. 

NC enables intelligent decision 
making by processing at the 
device point without 
communication to a remote 
processor. 

“Global neuromorphic computing 
market … in 2016, expanding at a 
CAGR of 20.2% over the forecast 
period. Increasing demand for AI 
for language processing, 
translation and chatterbots, 
nonlinear controls and robotics, 
and computer vision and image 
processing, among others is 
expected to drive market 
growth.”11 

Increasing demand for AI Increased performance at 
constant power density 
(constrained by thermal 
management). 

NC augments traditional 
processing with more power 
efficient computing 
capabilities. 
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specialized digital and analog conventional processors 
optimized for machine-learning “kernels,” to systems 
relying on novel device materials and architectures that 
attempt to directly simulate an ensemble of neurons. 
While a large addressable market exists for high-
performance computing applications, the current NC 
market challenge is that the hardware must be tailored to 
specific applications. This suggests that the end-user 
market must have adequate volume to justify the upfront 
capital investment for domain-specific NC hardware 
development. Yet the domain of space is generally 
considered to be a niche market. It is reasonable to expect; 
however, that the general consumer market for high-

performance NC may eventually blaze the trail for follow-
on niche level markets, such as high-performance on-orbit 
computing in space. A few leaders are discussed below. 
Conventional Microelectronics Implementations 
(CMOS Platform) 
Field programmable gate arrays (FPGAs) are a commonly 
used platform for neuromorphic algorithm implementation 
and radiation hard FPGAs are commercially available.  

Their programmability can be leveraged to realize a 
variety of network topologies, models and algorithms. 
They are readily available, reconfigurable, and can be 
optimized for specific applications. However, if the goal is 

 
Figure 3: Game Changer Lifecycle: The field of NC is currently in the demo and R&D phase for terrestrial based commercial and R&D entities. 
Market maturity depends upon certain triggers. Although space applications have not yet emerged, targeted R&D investment will position NC 
for future space needs.  
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Table 2: Hardware Implementations of Neural Networks 
This table provides a list of NC innovators and stakeholders and is not comprehensive. 

Company/ 
Project 

User 
Applications 

Energy 
Consumption 

In-situ 
Learning and 

Autonomy Implementation Mobility 
Market 

Readiness 

Commercial 
1.  IBM/ 

TrueNorth 
Weather and 
customer 
focused 
applications 

High No CMOS 
processes 

No Fully operational 
product  

2.  Google (OK 
Google)/ 
Apple (Siri)/ 
Microsoft/ 
Cortana 

Image and 
speech 
recognition 

High No, learning 
by software  

AI software 
running on a 

supercomputer: 
16,000 CPU 

cluster (Google) 

Mobile terminals 
for cloud comm 

Demonstrated 

3.  Qualcomm/ 
Zeroth 

Robot control Low Yes Unknown, 
probably CMOS 

process 

Yes Prototype for 
demonstration 

4.  Intel/Loihi  Image 
recognition, 
control of robots, 
etc. 

Claims up to 
1,000 times higher 

efficiency than 
general purpose 

computing  

Yes 14-nm CMOS 
process 

Yes Prototype, may 
be available for 
researchers in 

2018 

Academic and Nonprofit 
5.  Zhejiang & 

Hangzhou 
Dianzi 
Univ./Darwin 

Brain/computer 
interface, 
research 

Unknown, 
probably high 

No CMOS 
technology 

No Prototype  

6.  Stanford 
University/ 
Neurogrid  

Research on 
human brain 
operations 

High No CMOS 
processes 

No Operational 

7.  Human Brain 
Project (EU)/ 
BrainScaleS  

Research, 
simulations of 
brain operations 

Claims 1,000 x 
higher efficiency 
than traditional 

chip  

No Wafer-scale 
application 

specific 
integrated circuit 

No Second 
generation chip. 

8.  Human Brain 
Project (EU) 
/SpiNNaker  

Research on 
human brain 
operations 

High No ARM boards/ 
custom 

interconnect 

No Operational, 
accessible to 
remote users  

9.  Sandia 
National Lab/ 
HAANA  

Image 
recognition, 
cybersecurity 

Low Yes Memristors Yes Prototype 

10.  DARPA & 
HRL Labs/ 
SyNAPSE 

Video 
recognition 
/Control of 
robots/drones 

Unknown Yes Hybrid circuit/ 
CMOS with 
memristors 

Yes Prototype  

11.  DARPA & 
HRL Labs/ 
FRANC    

Go beyond 
Moore's law to 
advance fast, 
lower power 
computation 

TBD TBD Exploit new 
materials and 

physics for fast, 
low power 

computation 

TBD Design phase - 
Pre-prototype 
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to realize a small, low-power system, an FPGA may not 
be the correct approach. A custom application specific 
integrated circuit (ASIC) design will likely allow better 
optimization of power efficiency. 

The most fully developed silicon-based neuromorphic 
platform is IBM’s TrueNorth, which is a custom 28-nm 
CMOS ASIC design with strong development support.15 
TrueNorth emerged from the DARPA SyNAPSE program 
(see Figure 3). It consists of four cores that yield one 
million neurons and over 250 million programmable 
synapses. Power efficiency is obtained by running the chip 
at a slow clock speed, limiting computational throughput; 
therefore, large problems may require many chips to solve 
(5.4-billion-transistor chip with 4,096 cores). TrueNorth is 
optimized for a specific network topology, and therefore 
has limited programmable connectivity. It does not have 
efficient on-chip learning, limiting the applications for 
which it is useful. Some processing must be done off-chip 
that may quickly dominate power costs, decreasing the 
low-power benefit. IBM researchers had recently proposed 
a novel deep neural network (DNN) implementation 
addressing some of the above limitations by combining 
conventional short-term and non-volatile long-term 
memories.16  

The TrueNorth chip was designed with the hope of 
integrating brain-like capability into devices where 
computation is constrained by power and speed. Other 
silicon-based neuromorphic systems, such as SpiNNaker17 
(University of Manchester), Neurogrid18 (Stanford) and 
FACETS19 (University of Heidelberg) were designed with 
the goal of simulating large-scale neural models of the 
brain itself.20 These systems have greatly increased the 
speed with which processes in the brain can be simulated 
and understood, and are in the early stages of becoming 
configurable through compiler hardware to make them 
useful for a wider variety of applications. In particular, 
SpiNNaker’s hardware is available to the research 
community at various levels of computing power, from a 
72-processor circuit board capable of simulating 10,000 
neurons, to a 921,600-processor machine comprising ten 
19-inch rack cabinets and capable of simulating hundreds 
of millions of neurons. 

For now, IBM’s TrueNorth chip (estimated computational 
efficiency and throughput exceed today’s GPUs by 340x 
and 50x, respectively)21 is the commercial market leader 

and we expect further market growth as they expand 
beyond currently targeted applications, such as the 
Weather Company where TrueNorth’s neurosynaptic 
system rapidly updates storm-scale models that can help 
predict weather events at local scales.  

Novel Device Implementations (Beyond CMOS: 
New Materials and Structures) 
Neural networks with high numbers of active parameters 
are made possible by modern large graphics processing 
unit (GPU) clusters. However, new technologies are 
required to achieve the next several orders of magnitude in 
energy savings which are measured in terms of computing 
performance per energy gains.  

The most widely researched novel technology for 
neuromorphic systems is the memristor, a circuit element 
whose resistance (corresponding to its memory state) is 
dependent upon its historical activity that allows the 
implementation of a learning process.22,23 Consequently, 
memristors have become popular in neuromorphic 
implementations because memristor-based circuits can 
exhibit behavior similar to that of biological synapses 
controlling brain memory and learning processes. 
Memristors are energy efficient and can be fabricated in 
densely packed crossbar arrays that reduce the size and 
weight, while increasing memory density of a 
neuromorphic processor (see Figure 2b).  

Memristors and other novel device implementations can 
be fabricated from a variety of materials, some of which 
have not historically been used in space systems. The 
reliability and radiation tolerance of many of these 
materials are becoming increasingly well-characterized, 
and several material systems of interest have been shown 
to be tolerant to radiation environments.24,25,26 The inherent 
fault tolerance of neuromorphic networks can help 
mitigate variability among devices in a large array. 

Sandia Laboratories’ Hardware Acceleration of Adaptive 
Neural Algorithms (HAANA) program developed a 
compact memristor-based neuromorphic computer using 
co-designed hardware, architecture, and algorithm 
systems. This general purpose neural architecture can 
address cyber security, remote tracking and other 
applications. Using an analog resistive memory (RRAM 
memristor) crossbar technology, HAANA requires 430 
times less energy compared to a system employing a static 
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random-access memory (SRAM) based accelerator (as in 
TrueNorth).27,28 

Among a variety of commercially available options in the 
memristor family, which were not yet evaluated for 
neuromorphic systems, we should mention an interlocking 
matrix of NRAM cells made of carbon nanotubes.29 
NRAM has desirable properties for implementation in a 
host of integrated systems due to its demonstrated 
advantages of operation, including high speed (switch 
state in picoseconds), high endurance (over a trillion), and 
low power (with essential zero standby power).  

DARPA initiated a program in 2017 which aims to build 
the first-ever all-memristor processor. DARPA’s project 
“Foundations Required for Novel Compute” (FRANC) 
will attempt to realize circuit prototypes beyond von 
Neumann topologies and will leverage emerging materials 
and integration technologies. This research project, if 
successful, will be significant because the industry is 
reaching the limits of Moore’s Law. HRL Labs researcher, 
Dana Wheeler, noted that “We’ve known for some time 
that if you keep cramming components onto a chip and 
making it faster, eventually it will get hot enough to melt 
the circuit.”30  

Neuromorphic Commercial and Research/
Nonprofit Implementations  
Table 2 lists examples of nonprofit and R&D institutions 
and commercial providers of neuromorphic engineering 
solutions. Clearly, “one size doesn’t fit all.” The range of 
implementations vary depending upon end-user needs and 
applications, including: robot control, image and speech 
recognition, research, and human brain operations. 
Attributes can also vary depending upon whether the 
application is mobile or stationary. Example attributes 
include: 

User Applications – What are the targeted applications? 

Energy Efficiency – Is this a power-efficient solution 
relative to other existing technology options?  

In-situ Learning and Autonomy – Does this solution allow 
the user to perform off-line, without external connection? 
And without human intervention? 

Implementations – What hardware technology and 
software are employed in this solution?  

Mobility – Is the solution acceptable for mobile 
applications (mass and size efficient)? 

Market Readiness – Is this technology ready for market 
(consumer or government applications)? 

Game Changer Lifecycle: Market and Technology 
Triggers 
Below, we discuss technology triggers that will advance 
neuromorphic computing: 

 Technology triggers for space applications 

 Technology triggers to advance maturity in general 
market 

 Market triggers for general market and space 
applications 

Technology Triggers for NC in Space Applications 
At this point, most systems (see Table 2) have some 
attributes necessary to operate in space. In addition to 
energy efficiency, in-situ learning and autonomy, space 
based NC chips must be “hardened” for a harsh space 
environment that includes radiation. NC architectures in 
space must also meet stringent size/weight requirements 
and retain sizable data with power interruptions. We 
believe that these challenges are surmountable, as low-
power operations and rad-hardness were demonstrated in 
well-studied metal oxide materials used in memristor 
devices and conventional transistors.  

Fast learning capability points to memristor-based 
hardware as a potentially viable technology; however, 
memristors, which may employ a large variety of 
materials, have not yet been widely proven to operate in a 
space environment. 

Technology Triggers to Advance NC Maturity in 
the General Market 
The following triggers will advance the technology 
maturity of NC in the general market: 

Hardware Research Developments – Need to understand 
and resolve outstanding issues in NVM (non-volatile 
memory) technology, such as the read/write operation 
noise, stochasticity and non-linearity of the memory 
switching operations that is related to the atomic-level 
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properties of the employed materials. Ongoing research 
efforts are currently addressing these challenges.  

Co-development of Algorithms, Architectures, and 
Hardware-Enhancing NC Capability – A Department of 
Energy roundtable of experts31 concluded that a 
revolutionary technological leap to a neuromorphic 
computer is determined by/depends on “the development 
of novel materials and devices incorporated into unique 
architectures.” It points to an accelerating strategy through 
the convergence of development efforts, including the co-
development of algorithms, architecture and hardware, 
combining the expertise of groups/organizations, as was 
demonstrated by the HAANA program (2017) at Sandia 
National Labs. Since then, progress has been made to make 
implementations more effective—particularly an improved 
understanding of critical materials and operational 
properties of novel memory (NVM) devices. Significant 
advances in algorithm development addressed critical 
issues such as training techniques, visualization of data 
representations, and learning strategies. To overcome the 
above “bias barrier,” the technology evaluation should be 
performed comprehensively under the space application-
specific conditions.  

Market Triggers for General NC Market and Space 
Applications Market 
Develop Tools and a Robust Community of Users – 
Conventional architectures have a robust suite of 
development tools, along with large numbers of technical 
staff who are trained in their use. In brief, NC competes 
for resources and attention from the vast numbers of 
researchers and users focusing on conventional computing 
architectures.32 The user-base needs motivation and 
incentives to switch to a new and unfamiliar architecture. 
It remains unknown what that tipping point might be—
possibly a practical means of offering significant 
performance or power advantage.  

High-Volume Consumer Applications for NC – Commercial 
players such as IBM, Google, and others will target large 
consumer markets, which may eventually drive down 
manufacturing costs of NC hardware. While space typically 
relies upon small quantities of high-cost parts, the industry is 
changing rapidly and more commercial grade parts are being 
integrated into space systems. Also, NC applications will 
continue to evolve and grow. The space sector niche market 
will be able to leverage a range of software, algorithms, and 

applications from high-volume terrestrial market 
applications. 

Conclusion 
Neuromorphic-inspired architectures are aimed to address 
the shortcomings of modern computing to meet next-
generation space electronics requirements. Deploying faster, 
smarter, autonomous, and more power-efficient satellites in 
space is a significant advantage—for both government and 
commercial stakeholders. It is reasonable to expect that NC 
will eventually prove to be a game changer for space 
operations because it has demonstrated the potential to 
overcome constraints on power and speed to enable agile 
information systems.  

However, there is much work ahead. The extremely high 
growth rate of AI in almost every sector of the economy, 
coupled with the continued expansion of cloud computing, 
mobile computing, and the IoT will drive R&D funding and 
commercial incentives to advance the state of play for NC. 
The successful introduction of NC to space applications will 
depend on the space sector’s ability to “spin-in” NC 
innovations from the commercial and R&D sector. Much 
like cloud computing, 3D printing, and artificial intelligence, 
which began as non-space applications, NC will need to 
compete for significant R&D funding and commercial 
investment.  

Over time, however, we expect that NC will reach an 
inflection point where the space sector can take advantage of 
these technological developments and begin to customize 
NC architectures for specific space applications and 
environments. A well-coordinated effort utilizing the most 
promising technologies and know-how from industry and 
academia could result in a successful demonstration in space 
vehicles within the next three to six years. 
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